运动想象识别将大脑的神经活动信号转为编码输出以实现意念控制,是脑机接口的一个重要研究方向.近年来深度学习算法的应用进一步提高了运动想象识别的准确率,但是当前基于深度学习的运动想象分析都将多路脑电信号作为二维矩阵信号,忽视了不同节点的空间关联信息.为了解决这个问题,将图卷积网络算法应用到运动想象分类中,通过多个节点脑电信号的相关系数建立脑电图结构,提取脑电信号的时频域特征信息作为输入,再经过图卷积网络进行节点特征聚合以学习谱域特征,最后通过全连接层输出分类结果.该方法在BCI Competition IV Dataset 2a数据集上取得80.9%的准确率和0.74的kappa系数,相比其他方法可以充分学习时、频、谱域的特征信息,取得更好的识别效果,为运动想象脑机接口提供一种新的思路和方法.