基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
运动想象识别将大脑的神经活动信号转为编码输出以实现意念控制,是脑机接口的一个重要研究方向.近年来深度学习算法的应用进一步提高了运动想象识别的准确率,但是当前基于深度学习的运动想象分析都将多路脑电信号作为二维矩阵信号,忽视了不同节点的空间关联信息.为了解决这个问题,将图卷积网络算法应用到运动想象分类中,通过多个节点脑电信号的相关系数建立脑电图结构,提取脑电信号的时频域特征信息作为输入,再经过图卷积网络进行节点特征聚合以学习谱域特征,最后通过全连接层输出分类结果.该方法在BCI Competition IV Dataset 2a数据集上取得80.9%的准确率和0.74的kappa系数,相比其他方法可以充分学习时、频、谱域的特征信息,取得更好的识别效果,为运动想象脑机接口提供一种新的思路和方法.
推荐文章
基于空间注意力与图卷积的多标签图像分类算法
图卷积网络
多标签图像分类
空间注意力
特征融合
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
基于改进卷积神经网络的手势识别
改进卷积神经网络
手势识别
准确率
图像处理
过拟合
Dropout
基于稀疏卷积神经网络的考生识别算法
考生识别
卷积神经网络
人脸识别
身份验证
多通道输入
方法比
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于图卷积网络的运动想象识别
来源期刊 计算机工程与应用 学科 工学
关键词 图卷积网络(GCN) 运动想象 深度学习 时频特征
年,卷(期) 2022,(4) 所属期刊栏目 模式识别与人工智能|Pattern Recognition and Artificial Intelligence
研究方向 页码范围 186-191
页数 6页 分类号 TP391
字数 语种 中文
DOI 10.3778/j.issn.1002-8331.2008-0404
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图卷积网络(GCN)
运动想象
深度学习
时频特征
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导