作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文分析了深度学习算法和列车门窗检测的意义,并且从目标检测技术中的图像特征、传统的分类算法、神经网络与深度学习、基于可变窗的物体检测模型四个方面研究了基于深度学习的列车门窗检测算法。希望能够通过本文的研究内容为相关工作人员提供一些参考意见,从而进一步提高铁路运输的安全性。
推荐文章
基于锚框的深度学习物体目标检测算法概览
深度学习
卷积神经网络
一阶段检测
二阶段检测
数据集
分类预测
位置回归
锚框
基于深度序列加权核极限学习的入侵检测算法
深度信念网络
序列学习
核极限学习
样本加权
入侵检测
基于深度学习的入侵检测算法
深度学习
网络安全
入侵检测
卷积神经网络
可视化处理
KDD CUP99
基于深度学习的偏光片缺陷实时检测算法
偏光片
缺陷检测
深度学习
并行模块
并行非对称卷积
全局均值池化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的列车门窗检测算法研究
来源期刊 数字化用户 学科
关键词 深度学习 列车门窗检测 检测算法
年,卷(期) 2022,(6) 所属期刊栏目 设计与研究
研究方向 页码范围 76-78
页数 3页 分类号
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
列车门窗检测
检测算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数字化用户
周刊
1009-0843
51-1567/TN
16开
四川省成都市
1999
chi
出版文献量(篇)
46696
总下载数(次)
249
总被引数(次)
7926
论文1v1指导