为实现对植物油的快速检测,借助衰减全反射-傅里叶变换红外光谱分析技术并结合深度学习算法对植物油开展光谱模式识别工作。实验获取8种植物油样本的光谱数据,采用标准正态变换和一阶导数预处理方法消除背景干扰,同时采用竞争性自适应重加权算法模型对各样本特征光谱数据进行提取,分别建立长短记忆神经网络(LSTM)、基于Levenberg-Marquardt算法改进的BP神经网络对提取特征波长后的植物油种类进行预测识别与比较,并采用后者进行了实际样品的识别检测。结果表明,通过提取特征波长,可有效提高LSTM模型的识别准确率,其最优准确率从提取特征波长前的30%~40%提高到80%~90%,模型运行时间从提取特征波长前的111 min 25 s缩短至1 min 45 s。相较于LSTM模型,基于Levenberg-Marquardt算法改进的BP神经网络的分类识别准确率更高,达到99.852%,用于实际样品的识别,识别准确率达到100%。实验结果可为植物油的无损快速检验提供一定的参考与借鉴。