作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
构造了一类依赖于某一参数δ的多项式系统, 位于此系统的向量场中的多个相邻的单重极限环可以随δ的单调变化而同时扩大(或缩小), 不过这时极限环的扩大(或缩小)不一定是单调的.由于这种向量场类似于旋转向量 ,故称此系统的这些极限环关于δ形成"类旋转向量场",它们可以作为研究重环和分界线环分支的一种有效工具.
推荐文章
一类非多项式平面向量场的极限环(Ⅰ)
非多项式平面向量场
极限环
形式级数法理论
Dulac准则
Hopf分支理论
广义Liénard平面向量场
7次Z7-等变平面多项式干扰向量场的极限环分支
极限环分支
Z7-等变平面干扰向量场
判定函数
异宿环和同宿环
扰动哈密顿系统
一类包含Bernoulli多项式与Euler多项式的积的和
Bernoulli数
Bernoulli多项式
Euler数
Euler多项式
乘积的和
多项式光滑孪生支持向量回归机
孪生支持向量回归机
多项式
光滑
New ton-Armijo算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多项式系统的类旋转向量场
来源期刊 应用数学和力学 学科 数学
关键词 多项系统 类旋转向量场 极限环 Poincaré分支
年,卷(期) 2000,(5) 所属期刊栏目
研究方向 页码范围 541-546
页数 6页 分类号 O175
字数 3549字 语种 中文
DOI 10.3321/j.issn:1000-0887.2000.05.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 沈伯骞 辽宁师范大学数学系 38 168 8.0 12.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2000(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多项系统
类旋转向量场
极限环
Poincaré分支
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用数学和力学
月刊
1000-0887
50-1060/O3
16开
重庆交通大学90号信箱
78-21
1980
chi
出版文献量(篇)
3740
总下载数(次)
2
总被引数(次)
22232
论文1v1指导