原文服务方: 机械强度       
摘要:
隐Markov模型是一个双随机过程,适用于动态过程的时间序列的建模并具有强大的时序模式分类能力,特别适合非平稳、重复再现性不佳的信号分析;小波变换具有多分辨率分析的特点,在时频两域都具有表征信号局部特征的能力.文中将小波变换和隐Markov模型相结合,提出基于小波变换的HMM状态识别法,利用Daubechies小波进行8尺度的小波分解,然后从小波分解结构中提取一维信号的低频系数作为特征向量,将其输入到各个状态HMM来进行训练,其中输出概率最大的状态即是机组运行状态,从而实现状态的识别,实验结果表明该方法很有效.
推荐文章
基于MCKD和包络谱的旋转机械故障诊断方法
旋转机械故障诊断
最大相关峭度解卷积
包络谱
最小熵解卷积
基于LabVIEW和BP神经网络的旋转机械故障诊断研究
旋转机械
LabVIEW
BP神经网络
故障诊断
基于神经网络的旋转机械故障诊断研究
故障诊断
神经网络
旋转机械
智能诊断
感知器
基于支持向量机的旋转机械故障诊断研究
小波包分析
故障诊断
支持向量机
核函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Wavelet-HMM的旋转机械故障诊断方法研究
来源期刊 机械强度 学科
关键词 小波变换 隐Markov模型(HMM) 故障诊断
年,卷(期) 2003,(5) 所属期刊栏目 振动·监测·诊断
研究方向 页码范围 173-475
页数 3页 分类号 TP206.3|TH165.3|TH17|TN911
字数 语种 中文
DOI 10.3321/j.issn:1001-9669.2003.05.001
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴昭同 浙江大学机械系 177 4029 36.0 52.0
2 丁启全 浙江大学机械系 29 405 11.0 18.0
3 何树波 浙江大学机械系 1 13 1.0 1.0
4 李志安 浙江大学机械系 1 13 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (13)
同被引文献  (9)
二级引证文献  (16)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2004(1)
  • 引证文献(1)
  • 二级引证文献(0)
2007(3)
  • 引证文献(3)
  • 二级引证文献(0)
2008(3)
  • 引证文献(2)
  • 二级引证文献(1)
2009(3)
  • 引证文献(2)
  • 二级引证文献(1)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(4)
  • 引证文献(1)
  • 二级引证文献(3)
2013(4)
  • 引证文献(0)
  • 二级引证文献(4)
2014(2)
  • 引证文献(0)
  • 二级引证文献(2)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(3)
  • 引证文献(2)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
小波变换 隐Markov模型(HMM) 故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械强度
双月刊
1001-9669
41-1134/TH
大16开
河南省郑州市科学大道149号
1975-01-01
中文
出版文献量(篇)
4191
总下载数(次)
0
总被引数(次)
35027
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导