基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种新的基于粒子滤波器的贝叶斯滤波算法, 用于在非线性非高斯假设下跟踪多机动目标.对目标动态行为的已知描述构成了贝叶斯的先验知识.近来时序蒙特卡罗技术的发展, 特别是粒子滤波器算法, 使采用一个目标状态的集合对贝叶斯模型的后验知识进行建模和跟踪成为可能, 这个集合可以看作是这个后验密度函数的采样集合.这种新的贝叶斯滤波算法是粒子滤波器与划分采样技术和假设计算的有机结合.在与SIR/MCJPDA算法的比较仿真研究中, 证明该算法能够提高系统的跟踪性能.
推荐文章
基于t-分布粒子滤波器的目标跟踪
目标跟踪
贝叶斯跟踪
非线性非高斯随机系统
序列重要性采样
t-分布粒子滤波器
ECME算法
无色卡尔曼滤波
自助式粒子滤波器
基于贝叶斯原理的粒子滤波算法
贝叶斯估计
粒子滤波
蒙特卡罗方法
非线性滤波
用于机动目标跟踪的多模型概率假设密度滤波器
机动目标跟踪
概率假设密度
多模型
估计
基于粒子群改进粒子滤波的机动目标跟踪方法
粒子滤波
粒子群优化
机动飞行
跟踪
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子滤波器的多机动目标跟踪贝叶斯滤波算法研究
来源期刊 战术导弹技术 学科 工学
关键词 贝叶斯滤波 非线性/非高斯模型 多机动目标跟踪 粒子滤波器 划分采样
年,卷(期) 2005,(2) 所属期刊栏目 总体技术
研究方向 页码范围 13-19
页数 7页 分类号 TJ760.1
字数 7426字 语种 中文
DOI 10.3969/j.issn.1009-1300.2005.02.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 沈毅 186 1667 22.0 33.0
2 李延秋 4 61 4.0 4.0
3 刘志言 28 408 10.0 20.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (4)
共引文献  (4)
参考文献  (8)
节点文献
引证文献  (6)
同被引文献  (5)
二级引证文献  (2)
1993(2)
  • 参考文献(1)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(2)
  • 参考文献(2)
  • 二级参考文献(0)
2002(2)
  • 参考文献(2)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2008(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(2)
  • 引证文献(1)
  • 二级引证文献(1)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
贝叶斯滤波
非线性/非高斯模型
多机动目标跟踪
粒子滤波器
划分采样
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
战术导弹技术
双月刊
1009-1300
11-1771/TJ
大16开
北京市
1980
chi
出版文献量(篇)
2188
总下载数(次)
4
论文1v1指导