基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
BP神经网络由于具有对数据大规模并行处理及对知识有较强融合能力的优点,应用范围极广.然而也存在一些致命的缺点(如容易陷入局部极小点),通过遗传算法(GA)与BP网络结合,可以有效地解决该问题.优化证券投资组合的仿真模拟实验结果表明,其优化方案比使用二次规划法更优,该方法更具正确性、高效性和实用性.
推荐文章
基于遗传算法优化的BP神经网络研究应用
人工神经网络
BP神经网络
遗传算法
GA?BP神经网络
优化方法
搜索能力
改进遗传算法优化BP神经网络的语音情感识别
遗传算法
反向传播神经网络
语音情感识别
自适应
优化
基于遗传算法优化BP神经网络的高炉喷煤优化
高炉炼铁
喷煤优化
遗传算法
BP神经网络
遗传算法优化的BP神经网络税收模型
遗传算法
神经网络
税收模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于遗传算法BP神经网络优化证券组合投资
来源期刊 江汉大学学报(自然科学版) 学科 工学
关键词 遗传算法 BP神经网络 证券组合投资 马柯维茨模型 二次规划
年,卷(期) 2005,(3) 所属期刊栏目 计算机与信息科学
研究方向 页码范围 47-50
页数 4页 分类号 TP273|F830.91
字数 4112字 语种 中文
DOI 10.3969/j.issn.1673-0143.2005.03.013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨先凤 西南石油学院计算机科学系 30 134 6.0 10.0
2 朱小梅 西南石油学院计算机科学系 8 61 5.0 7.0
3 郭志钢 西南财经大学研究生部 4 28 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (1)
共引文献  (8)
参考文献  (2)
节点文献
引证文献  (18)
同被引文献  (10)
二级引证文献  (12)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2006(2)
  • 引证文献(2)
  • 二级引证文献(0)
2007(1)
  • 引证文献(1)
  • 二级引证文献(0)
2008(1)
  • 引证文献(1)
  • 二级引证文献(0)
2009(3)
  • 引证文献(3)
  • 二级引证文献(0)
2010(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(4)
  • 引证文献(1)
  • 二级引证文献(3)
2015(6)
  • 引证文献(2)
  • 二级引证文献(4)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(2)
  • 引证文献(1)
  • 二级引证文献(1)
2019(3)
  • 引证文献(2)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
遗传算法
BP神经网络
证券组合投资
马柯维茨模型
二次规划
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
江汉大学学报(自然科学版)
双月刊
1673-0143
42-1737/N
大16开
武汉经济技术开发区江汉大学期刊社
1973
chi
出版文献量(篇)
2387
总下载数(次)
5
总被引数(次)
7420
论文1v1指导