基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种基于动态MFCC特征的说话人识别算法.该算法根据说话人的基音频率随语境变化的特点,通过动态构建基于说话人基音频率的Mel-滤波器组,以抽取可以表征说话人身份特征的动态MFCC参数,提高说话人辨识的准确性和鲁棒性.此外,本文还讨论了基于高斯混合模型的分类器设计问题,给出了一个通过聚类分析获得高斯混合模型的最优混合度与相关模型参数的初始估计的方法.实验证明,本文所提出的方法在实际中能够获得较好的识别结果.
推荐文章
一种基于MFCC与韵律特征的说话人确认方法
说话人确认
梅尔倒谱系数
韵律特征
基于多特征有效组合的说话人识别
说话人识别
动态规整
MFCC
LPCC
基音周期
基于MFCC和运动强度聚类初始化的多说话人识别
多说话人识别
聚类初始化
运动强度特征
运动强度初始化
基于i-vector说话人识别算法中训练时长研究
说话人识别
i-vector
Kaldi
训练时长
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于动态MFCC的说话人识别算法
来源期刊 模式识别与人工智能 学科 工学
关键词 美尔频率倒谱系数(MFCC) 基音检测 说话人识别 高斯混合模型
年,卷(期) 2005,(5) 所属期刊栏目 研究与应用
研究方向 页码范围 596-601
页数 6页 分类号 TN912.34
字数 5768字 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (4)
共引文献  (31)
参考文献  (4)
节点文献
引证文献  (18)
同被引文献  (12)
二级引证文献  (12)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2007(1)
  • 引证文献(1)
  • 二级引证文献(0)
2009(3)
  • 引证文献(3)
  • 二级引证文献(0)
2010(2)
  • 引证文献(1)
  • 二级引证文献(1)
2011(2)
  • 引证文献(1)
  • 二级引证文献(1)
2012(2)
  • 引证文献(1)
  • 二级引证文献(1)
2013(2)
  • 引证文献(1)
  • 二级引证文献(1)
2014(7)
  • 引证文献(3)
  • 二级引证文献(4)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(2)
  • 引证文献(1)
  • 二级引证文献(1)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
美尔频率倒谱系数(MFCC)
基音检测
说话人识别
高斯混合模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
模式识别与人工智能
月刊
1003-6059
34-1089/TP
16开
中国科学院合肥智能机械研究所安徽合肥董铺岛合肥1130信箱
26-69
1989
chi
出版文献量(篇)
2928
总下载数(次)
8
总被引数(次)
30919
论文1v1指导