基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对解决多类模式识别问题的SVM方法进行研究,在比较常用的几种多类SVM分类算法基础上,提出了一种基于核聚类方法的多层次SVM分类树,将核空间中的无监督学习方法和有监督学习方法结合起来,实现了一种结构更加简洁清晰、计算效率更高的多层SVM分类树算法,并在实验中取得了良好的结果.
推荐文章
基于模糊核聚类的多类支持向量机
支持向量机
多类分类
模糊核
二叉树
一种基于聚类核的半监督支持向量机分类方法
聚类核
聚类假设
半监督支持向量机
分类
基于密度聚类的支持向量机分类算法
支持向量机
密度聚类
ε-邻域
基于聚类算法和层次支持向量机的人脸识别方法
聚类算法
层次支持向量机
免疫算法
小波变换
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于核聚类方法的多层次支持向量机分类树
来源期刊 计算机工程 学科 工学
关键词 多类模式识别 支持向量机 核聚类 统计学习理论
年,卷(期) 2005,(5) 所属期刊栏目 人工智能及识别技术
研究方向 页码范围 172-174
页数 3页 分类号 TP301.6
字数 3226字 语种 中文
DOI 10.3969/j.issn.1000-3428.2005.05.060
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郭立 中国科学技术大学电子科学与技术系 203 1655 20.0 30.0
2 张国宣 中国科学技术大学电子科学与技术系 11 303 8.0 11.0
3 孔锐 中国科学技术大学电子科学与技术系 10 277 8.0 10.0
4 施泽生 中国科学技术大学电子科学与技术系 17 417 9.0 17.0
5 刘士建 中国科学技术大学电子科学与技术系 26 241 9.0 14.0
6 薛明东 中国科学技术大学电子科学与技术系 3 65 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (1)
节点文献
引证文献  (12)
同被引文献  (15)
二级引证文献  (3)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2005(1)
  • 引证文献(1)
  • 二级引证文献(0)
2006(1)
  • 引证文献(1)
  • 二级引证文献(0)
2007(2)
  • 引证文献(2)
  • 二级引证文献(0)
2008(1)
  • 引证文献(1)
  • 二级引证文献(0)
2009(2)
  • 引证文献(2)
  • 二级引证文献(0)
2010(4)
  • 引证文献(3)
  • 二级引证文献(1)
2011(2)
  • 引证文献(1)
  • 二级引证文献(1)
2020(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
多类模式识别
支持向量机
核聚类
统计学习理论
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导