基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
VBR(Variable Bit Rate)视频信号具有时变性、非线性和突发性等特点,实现该信号通信量的高精度预测是提高信息传输速度和提高网络带宽资源利用效率的重要手段.针对以上问题,本文提出了一种用于VBR视频通信量预测的差分输入支持向量机(SVM:Support Vector Machine)网络模型.该网络模型采用结构风险最小化准则,在最小化经验风险的同时,尽量缩小模型预测误差的上界,从而使网络模型具有更好的推广能力.实验结果表明:支持向量机网络模型的预测误差为0.0018,而梯度径向基函数(Gradient Radial Basis Function:GRBF)神经网络模型的预测误差为0.0029.可以看出,支持向量机网络模型的预测精度要比GRBF网络模型的预测精度高出大约40%.
推荐文章
用神经网络实现VBR视频通信量的在线预测
视频通信
时延神经网络
广义卡尔曼滤波
递归最小方差
蒸发蒸腾量支持向量机预测
蒸发蒸腾量
统计学习理论
支持向量机
预测
基于支持向量机的旅游需求量预测模型
旅游需求量
预测模型
支持向量机
灰色模型
参数优化
遗传算法优化支持向量机的网络流量混沌预测
遗传算法优化
支持向量机
网络流量
混沌预测
相空间重构
预测模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 用支持向量机网络实现VBR视频通信量的预测
来源期刊 电子学报 学科 工学
关键词 VBR视频通信量 支持向量机 结构风险
年,卷(期) 2006,(2) 所属期刊栏目 学术论文
研究方向 页码范围 210-213
页数 4页 分类号 TP183|TP18|TP391.4
字数 2941字 语种 中文
DOI 10.3321/j.issn:0372-2112.2006.02.005
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 常胜江 南开大学信息技术科学学院 80 596 15.0 19.0
2 张延炘 南开大学信息技术科学学院 34 310 12.0 15.0
3 李素梅 南开大学信息技术科学学院 6 57 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (13)
共引文献  (10)
参考文献  (8)
节点文献
引证文献  (3)
同被引文献  (13)
二级引证文献  (8)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(1)
  • 二级参考文献(1)
1992(2)
  • 参考文献(1)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(4)
  • 参考文献(2)
  • 二级参考文献(2)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2007(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(1)
  • 引证文献(0)
  • 二级引证文献(1)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(0)
  • 二级引证文献(1)
2015(2)
  • 引证文献(0)
  • 二级引证文献(2)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
VBR视频通信量
支持向量机
结构风险
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子学报
月刊
0372-2112
11-2087/TN
大16开
北京165信箱
2-891
1962
chi
出版文献量(篇)
11181
总下载数(次)
11
总被引数(次)
206555
论文1v1指导