基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
支持向量机作为一种新的机器学习方法,由于其建立在结构风险最小化准则之上,而不是仅仅使经验风险达到最小,从而使对支持向量分类器具有较好的推广能力。本文分析了支持向量机在解决无监督分类问题上的不足,提出一种基于支持向量机思想的最大间距的聚类新方法。实验结果表明.该算法能成功地解决很多非监督分类问题。
推荐文章
一种基于聚类核的半监督支持向量机分类方法
聚类核
聚类假设
半监督支持向量机
分类
基于密度聚类的支持向量机分类算法
支持向量机
密度聚类
ε-邻域
基于一种混合核函数的支持向量机聚类
SVM
混合核函数
加权多宽度高斯核
支持向量聚类
基于模糊核聚类的多类支持向量机
支持向量机
多类分类
模糊核
二叉树
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于支持向量机思想的无监督聚类算法
来源期刊 电脑知识与技术:学术交流 学科 工学
关键词 支持向量机 结构风险 无监督学习 聚类
年,卷(期) 2006,(8) 所属期刊栏目
研究方向 页码范围 143-144
页数 2页 分类号 TP317
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴德会 66 721 15.0 23.0
2 汪海滨 15 30 2.0 5.0
3 龙俊波 14 30 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
支持向量机
结构风险
无监督学习
聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
论文1v1指导