作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
引荐了一种自动优化神经网络的新方法.这种启迪方法综合采用了相关有效算法,通过快速自底向上构造神经网络算法,可以获得优化结构的神经网络,即时选定参数算法动态优化神经网络的学习参数,并且快速交叉校验算法为解决过度适应问题提供了捷径.实验证明,这种启迪方法能自动有效地优化神经网络,与其它算法相较而言,具有更好的归纳性能、优化的网络结构和更快的学习速度.
推荐文章
基于Pareto的神经网络结构集成优化方法
结构优化
进化计算
Pareto最优
网络集成
基于遗传优化的概率神经网络预测方法
神经网络
概率神经网络
遗传算法
故障预测
奇异谱
基于神经网络的翼型优化设计方法研究
神经网络
遗传算法
气动优化设计
基于粒子群优化神经网络的卫星故障预测方法
故障预测
卫星
粒子群优化
神经网络
时间序列
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 自底向上优化神经网络的方法
来源期刊 计算机工程与应用 学科 工学
关键词 神经网络 瀑流关联 自底向上 学习参数优化 交叉校验
年,卷(期) 2006,(23) 所属期刊栏目 学术探讨
研究方向 页码范围 34-37,77
页数 5页 分类号 TP183
字数 5649字 语种 中文
DOI 10.3321/j.issn:1002-8331.2006.23.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨钟瑾 广东商学院信息学院 9 96 4.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (13)
共引文献  (12)
参考文献  (5)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(3)
  • 参考文献(0)
  • 二级参考文献(3)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(4)
  • 参考文献(1)
  • 二级参考文献(3)
1995(2)
  • 参考文献(1)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
神经网络
瀑流关联
自底向上
学习参数优化
交叉校验
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导