基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对现今在非线性系统盲辨识研究中遇到的困难,提出了一种基于最小二乘支持向量机(LS-SVM)的非线性系统盲辨识方法.该方法直接对非线性系统输出进行过采样,运用LS-SVM非线性建模技术,并结合输入的分布特性,从而完成非线性系统的盲辨识.介绍了盲系统辨识问题的研究内容及过采样技术原理,对LS-SVM的盲系统辨识机理和算法步骤进行了阐述.仿真结果表明了该方法在解决非线性系统盲辨识问题上的切实可行性.
推荐文章
基于贝叶斯回归LS-SVM的非线性系统观测
LS-SVM
非线性控制系统
观测器
贝叶斯框架
优化
信号输入输出
基于LS-SVM的非线性系统自适应输出反馈控制
最小二乘支持向量机
非线性系统
自适应控制
反馈控制
基于PSO滚动优化的LS-SVM预测控制
非线性模型预测控制
非线性建模
最小二乘支持向量机
粒子群算法
基于LS-SVM的仿射非线性系统的最优跟随控制
最小二乘支持向量机
仿射非线性系统
最优跟随控制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于LS-SVM的非线性系统盲辨识
来源期刊 广东工业大学学报 学科 工学
关键词 盲辨识 支持向量机 过采样
年,卷(期) 2007,(2) 所属期刊栏目
研究方向 页码范围 76-79
页数 4页 分类号 TP181
字数 3056字 语种 中文
DOI 10.3969/j.issn.1007-7162.2007.02.020
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 章云 广东工业大学自动化学院 184 1172 18.0 24.0
2 谭洪舟 中山大学信息科学与技术学院 55 276 8.0 12.0
3 朱燕飞 广东工业大学自动化学院 20 104 5.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (9)
节点文献
引证文献  (3)
同被引文献  (0)
二级引证文献  (0)
1997(2)
  • 参考文献(2)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(2)
  • 参考文献(2)
  • 二级参考文献(0)
2000(2)
  • 参考文献(2)
  • 二级参考文献(0)
2002(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
盲辨识
支持向量机
过采样
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
广东工业大学学报
双月刊
1007-7162
44-1428/T
16开
广东省广州市东风东路729号
1974
chi
出版文献量(篇)
2262
总下载数(次)
2
总被引数(次)
11966
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导