作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
电力系统短期负荷预测是电力系统调度运营和用电服务部门的重要日常工作之一,其预测精度直接影响到电力系统运行的安全性、经济性和供电质量.为提高预测精度,本文引入一种新型的群智能方法--粒子群优化算法,并将这种智能算法与BP算法相结合,形成了粒子群优化BP算法模型,建立了计及气象因素的短期负荷预测模型.通过具体算例将此模型与单纯的BP模型进行比较,结果表明:该算法具有较高的预测精度,完全能满足实际工程的要求.
推荐文章
基于RBFNN混合粒子群算法的电力负荷短期预测
电力负荷预测
径向基神经网络(RBFNN)
混合粒子群优化算法(HPSO)
基于粒子群的电力系统短期负荷预测
PSO
BP神经网络
适应度
迭代
模糊推理
基于结合混沌纵横交叉的粒子群算法优化极限学习机的短期负荷预测
极限学习机
混沌纵横交叉
粒子群算法
预测精度
短期负荷预测
粒子群优化BP算法在电力系统短期负荷预测中的应用
粒子群算法
BP模型
粒子群优化BP模型
短期负荷预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 粒子群优化BP算法在短期负荷预测中的应用
来源期刊 山东电力高等专科学校学报 学科 工学
关键词 粒子群算法 BP模型 粒子群优化BP模型 短期负荷预测
年,卷(期) 2007,(4) 所属期刊栏目 工程技术
研究方向 页码范围 63-66
页数 4页 分类号 TM715
字数 3184字 语种 中文
DOI 10.3969/j.issn.1008-3162.2007.04.020
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 傅忠云 南京航空航天大学金城学院 17 181 6.0 13.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (4)
共引文献  (459)
参考文献  (1)
节点文献
引证文献  (3)
同被引文献  (7)
二级引证文献  (9)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2008(1)
  • 引证文献(1)
  • 二级引证文献(0)
2009(3)
  • 引证文献(0)
  • 二级引证文献(3)
2010(1)
  • 引证文献(0)
  • 二级引证文献(1)
2011(3)
  • 引证文献(1)
  • 二级引证文献(2)
2012(1)
  • 引证文献(0)
  • 二级引证文献(1)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
粒子群算法
BP模型
粒子群优化BP模型
短期负荷预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国网技术学院学报
双月刊
2095-6614
37-1496/TK
大16开
山东省济南市二环南路500号
1998
chi
出版文献量(篇)
2542
总下载数(次)
11
论文1v1指导