基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种基于灰色关联度优化网络神经元数目和径向基函数网络用于刀具磨损量预测的方法.以选取合理的涵盖影响刀具磨损的有关因素,采用不同切削条件下铣削加工过程刀具后刀面磨损的多组实验数据对网络模型进行训练以及对刀具磨损量进行估计和预测,预测结果与实际基本吻合.结果表明,该方法克服了用一个多元线性公式描述由切削条件和切削带来的后刀面磨损量的变化的刀具磨损高度非线性模型方法的缺陷,对于与刀具磨损量相关因素的非线性本质较易准确表达,所建立的刀具磨损网络模型可以较满意地计算出不同切削条件下刀具后刀面的磨损量.
推荐文章
基于径向基函数网络的人脸识别
径向基函数网络
人脸识别
感受野
人脸库
基于径向基函数神经网络的板形模式识别研究
板形模式识别
RBF网络
模糊C均值算法
伪逆法
基于径向基函数神经网络的智能嗅觉系统
智能嗅觉系统
径向基函数网络
气体传感器阵列
选择性
径向基函数神经网络的再学习算法及其应用
径向基函数神经网络
再学习算法
训练样本
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于径向基函数网络的刀具磨损识别
来源期刊 测试技术学报 学科 工学
关键词 灰色关联度 径向基函数网络 刀具磨损 切削试验
年,卷(期) 2007,(3) 所属期刊栏目 信号检测、算法与仿真
研究方向 页码范围 219-224
页数 6页 分类号 TH165
字数 3462字 语种 中文
DOI 10.3969/j.issn.1671-7449.2007.03.007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈花玲 西安交通大学机械工程学院 142 1688 22.0 34.0
2 徐创文 西安交通大学机械工程学院 51 210 9.0 13.0
4 郭攀成 兰州工业高等专科学校机械工程系 34 104 6.0 8.0
5 严慧萍 兰州工业高等专科学校机械工程系 37 86 5.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (8)
参考文献  (9)
节点文献
引证文献  (5)
同被引文献  (15)
二级引证文献  (17)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(2)
  • 二级参考文献(0)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(2)
  • 参考文献(2)
  • 二级参考文献(0)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(2)
  • 引证文献(1)
  • 二级引证文献(1)
2013(3)
  • 引证文献(1)
  • 二级引证文献(2)
2014(1)
  • 引证文献(0)
  • 二级引证文献(1)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(6)
  • 引证文献(1)
  • 二级引证文献(5)
2017(5)
  • 引证文献(2)
  • 二级引证文献(3)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
灰色关联度
径向基函数网络
刀具磨损
切削试验
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测试技术学报
双月刊
1671-7449
14-1301/TP
大16开
太原13号信箱
22-14
1986
chi
出版文献量(篇)
2837
总下载数(次)
7
总被引数(次)
13975
论文1v1指导