基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
预测非编码RNA对认识其调控功能具有重要意义.选择单核苷酸和二核苷酸出现频率作为神经网络分类特征,运用主成分分析方法降低输入数据的维数,去除数据间的相关性,采用Levenberg-Marquardt算法改善网络训练速度.对数据集的测试结果表明,此方法对细菌混合ncRNA的预测精度达到81.3%,对原核生物tRNA的预测精度达到93.3%,表明该方法能有效预测原核生物ncRNA.预测结果还发现两种古细菌的ORF序列在序列特征上与其它细菌和古细菌存在差别.
推荐文章
基于主成分分析的BP神经网络长期预报模型
主成分分析
学习矩阵
BP神经网络
基于主成分分析的离散过程神经网络水淹层动态预测方法
测井曲线
动态预测
水淹层识别
主成分分析
离散过程神经网络
主成分分析与BP神经网络的人脸识别方法研究
主成分分析
BP神经网络
人脸识别
BioID人脸数据库
主成分分析结合人工神经网络用于焊接过程质量控制
主成分分析
神经网络:BP算法
质量控制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于主成分分析-神经网络的非编码RNA预测
来源期刊 生物医学工程研究 学科 医学
关键词 非编码RNA 主成分分析 方差贡献率 BP神经网络 Levenberg-Marquardt算法
年,卷(期) 2007,(1) 所属期刊栏目 论著
研究方向 页码范围 6-9
页数 4页 分类号 R318|Q752
字数 3142字 语种 中文
DOI 10.3969/j.issn.1672-6278.2007.01.002
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (112)
共引文献  (70)
参考文献  (9)
节点文献
引证文献  (12)
同被引文献  (15)
二级引证文献  (30)
1956(1)
  • 参考文献(0)
  • 二级参考文献(1)
1958(2)
  • 参考文献(0)
  • 二级参考文献(2)
1961(1)
  • 参考文献(0)
  • 二级参考文献(1)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(5)
  • 参考文献(0)
  • 二级参考文献(5)
2000(7)
  • 参考文献(0)
  • 二级参考文献(7)
2001(17)
  • 参考文献(3)
  • 二级参考文献(14)
2002(8)
  • 参考文献(1)
  • 二级参考文献(7)
2003(16)
  • 参考文献(0)
  • 二级参考文献(16)
2004(25)
  • 参考文献(0)
  • 二级参考文献(25)
2005(26)
  • 参考文献(3)
  • 二级参考文献(23)
2006(3)
  • 参考文献(2)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2007(2)
  • 引证文献(2)
  • 二级引证文献(0)
2008(1)
  • 引证文献(0)
  • 二级引证文献(1)
2009(2)
  • 引证文献(1)
  • 二级引证文献(1)
2010(2)
  • 引证文献(2)
  • 二级引证文献(0)
2011(4)
  • 引证文献(1)
  • 二级引证文献(3)
2012(2)
  • 引证文献(0)
  • 二级引证文献(2)
2013(7)
  • 引证文献(1)
  • 二级引证文献(6)
2014(5)
  • 引证文献(2)
  • 二级引证文献(3)
2015(4)
  • 引证文献(2)
  • 二级引证文献(2)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2017(4)
  • 引证文献(1)
  • 二级引证文献(3)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
非编码RNA
主成分分析
方差贡献率
BP神经网络
Levenberg-Marquardt算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
生物医学工程研究
季刊
1672-6278
37-1413/R
大16开
山东省济南市解放路11号
1982
chi
出版文献量(篇)
1657
总下载数(次)
8
总被引数(次)
7283
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导