基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
以神经网络和遗传算法为代表的进化算法都基于智能信息处理的理论,但是各自都存在一些缺陷.设计并实现了基于遗传算法的BP神经网络算法BP-GA,该算法将遗传算法和BP算法相结合,用基于实数编码的遗传算法优化神经网络的权值后,应用于图像压缩.实验证明,利用此混合神经网络进行图像压缩,压缩比高,图像恢复质量效果好.
推荐文章
基于遗传算法优化的BP神经网络研究应用
人工神经网络
BP神经网络
遗传算法
GA?BP神经网络
优化方法
搜索能力
遗传算法BP神经网络在变形监测中的研究
BP神经网络
遗传算法
建筑基坑
变形监测
预测
基于遗传算法优化的BP神经网络在密度界面反演中的应用
BP神经网络
遗传算法
密度界面反演
网络训练
优化
基于遗传算法的BP神经网络在企业资信评估中的应用
遗传算法
反向传播神经网络
资信等级评估
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于遗传算法的BP神经网络在图像压缩中的应用
来源期刊 量子电子学报 学科 工学
关键词 图像处理 图像压缩 遗传算法 BP神经网络
年,卷(期) 2007,(4) 所属期刊栏目 图像与信息处理
研究方向 页码范围 425-428
页数 4页 分类号 TP183
字数 2942字 语种 中文
DOI 10.3969/j.issn.1007-5461.2007.04.005
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李国丽 合肥工业大学电气与自动化工程学院 40 775 14.0 27.0
2 王世芳 合肥工业大学电气与自动化工程学院 2 34 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (14)
参考文献  (4)
节点文献
引证文献  (13)
同被引文献  (16)
二级引证文献  (13)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(3)
  • 参考文献(0)
  • 二级参考文献(3)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(3)
  • 参考文献(1)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(6)
  • 参考文献(0)
  • 二级参考文献(6)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2007(1)
  • 引证文献(1)
  • 二级引证文献(0)
2008(4)
  • 引证文献(4)
  • 二级引证文献(0)
2009(4)
  • 引证文献(3)
  • 二级引证文献(1)
2010(2)
  • 引证文献(1)
  • 二级引证文献(1)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(0)
  • 二级引证文献(1)
2014(2)
  • 引证文献(0)
  • 二级引证文献(2)
2015(2)
  • 引证文献(1)
  • 二级引证文献(1)
2016(3)
  • 引证文献(0)
  • 二级引证文献(3)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(1)
  • 二级引证文献(1)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
图像处理
图像压缩
遗传算法
BP神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
量子电子学报
双月刊
1007-5461
34-1163/TN
大16开
安徽省合肥市1125邮政信箱
26-89
1984
chi
出版文献量(篇)
2856
总下载数(次)
6
总被引数(次)
17822
论文1v1指导