基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
蚁群算法是优化领域中新出现的一种仿生进化算法,是研究组合优化、通信网络、机器人等许多领域的一种新方法.基于蚁群算法的聚类方法已经在当前数据挖掘研究中得到应用.本文通过此算法对企业的客户消费数据进行分类,以此来获取不同类型客户的需求并针对不同类型的消费群体制定相应的营销策略.
推荐文章
蚁群聚类算法在客户关系管理中的应用
蚁群算法
客户关系管理
聚类分析
蚁群聚类算法
蚁群聚类算法在隐写分析中的应用
隐写分析
富模型
集成分类
蚁群算法
基于扩散信息素的蚁群聚类算法及应用
蚁群算法
聚类分析
信息素扩散模型
客户分类
蚁群聚类算法在客户关系管理中的应用
蚁群算法
客户关系管理
聚类分析
蚁群聚类算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 蚁群聚类算法在客户分类中的应用
来源期刊 计算机与现代化 学科 工学
关键词 蚁群算法 聚类 数据挖掘
年,卷(期) 2007,(5) 所属期刊栏目 程序设计与算法
研究方向 页码范围 33-35
页数 3页 分类号 TP301
字数 2398字 语种 中文
DOI 10.3969/j.issn.1006-2475.2007.05.010
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 洪春勇 南昌大学计算中心 14 113 6.0 10.0
2 周晓刚 南昌大学计算中心 1 17 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (1)
节点文献
引证文献  (17)
同被引文献  (9)
二级引证文献  (1)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2007(1)
  • 引证文献(1)
  • 二级引证文献(0)
2008(2)
  • 引证文献(2)
  • 二级引证文献(0)
2009(3)
  • 引证文献(3)
  • 二级引证文献(0)
2010(4)
  • 引证文献(3)
  • 二级引证文献(1)
2011(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(3)
  • 引证文献(3)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
蚁群算法
聚类
数据挖掘
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与现代化
月刊
1006-2475
36-1137/TP
大16开
南昌市井冈山大道1416号
44-121
1985
chi
出版文献量(篇)
9036
总下载数(次)
25
论文1v1指导