作者:
原文服务方: 现代电子技术       
摘要:
蚁群算法是优化领域中一种新兴的生物进化算法,与传统的算法相比,其具有并行、正反馈和启发式搜索等特点.在此,运用蚁群聚类算法对客户关系管理中的客户分类问题进行分析.结果表明,通过此算法对企业的客户消费数据进行分类,以此来获取不同类型客户的需求,对支持企业决策方面有着极为重要的理论参考价值和实际应用意义.
推荐文章
蚁群聚类算法在隐写分析中的应用
隐写分析
富模型
集成分类
蚁群算法
聚类分析在电信行业客户关系管理中的应用
客户关系管理
数据挖掘
聚类分析
k-means
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 蚁群聚类算法在客户关系管理中的应用
来源期刊 现代电子技术 学科
关键词 蚁群算法 客户关系管理 聚类分析 蚁群聚类算法
年,卷(期) 2009,(20) 所属期刊栏目 科学计算与信息处理
研究方向 页码范围 155-156
页数 2页 分类号 TP311
字数 语种 中文
DOI 10.3969/j.issn.1004-373X.2009.20.050
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 桑国珍 渭南师范学院计算机科学系 16 46 3.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (24)
共引文献  (17)
参考文献  (6)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(7)
  • 参考文献(0)
  • 二级参考文献(7)
2004(5)
  • 参考文献(1)
  • 二级参考文献(4)
2005(7)
  • 参考文献(1)
  • 二级参考文献(6)
2007(3)
  • 参考文献(3)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
蚁群算法
客户关系管理
聚类分析
蚁群聚类算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
总被引数(次)
135074
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导