基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
以支持向量机(SVM)和传统统计分类方法为研究对象,详细介绍二者分类方法的基本理论,概述支持向量机的一些常用算法,并在改进共轭梯度迭代PRP-SVM基础上提出一种对任何SVM核通用的正交校正共轭梯度迭代的支撑向量机(CGM-OC-SVM)算法,并通过C语言编程实现了CGM-OC-SVM算法,利用Matlab进行算法模拟。
推荐文章
一种基于PSO的混合核支持向量机算法
支持向量机
全局核函数
局部核函数
混合核函数
粒子群优化算法
核PCA支持向量机算法研究
核函数
核主元分析
支持向量机
分类
基于一种混合核函数的支持向量机聚类
SVM
混合核函数
加权多宽度高斯核
支持向量聚类
一种快速加权支持向量机训练算法
加权支持向量机
工作集
目标函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种对任何SVM核通用的支持向量机算法
来源期刊 电脑知识与技术:学术交流 学科 工学
关键词 支持向量机 SVM PRP-SVM CGM-OC-SVM
年,卷(期) 2007,(8) 所属期刊栏目
研究方向 页码范围 814-815
页数 2页 分类号 TP391
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吾守尔·斯拉木 新疆大学信息科学与工程学院 148 619 13.0 18.0
2 陶梅 新疆大学信息科学与工程学院 5 31 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
支持向量机
SVM
PRP-SVM
CGM-OC-SVM
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
论文1v1指导