作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
一直以来,汉语自动分词是公认的汉语信息处理瓶颈。反思现有汉语自动分词技术,发现均有隐舍两大假设:语言是规律的、词具有确定边界?这与语言的复杂性、组合性、动态性、模糊性特征不符。本文采用一种基于隐马尔科夫模型(HMM)的算法.通过CHMM(层叠形马尔科夫模型)进行分词,再做分层,既增加了分词的;隹确性,又保证了分词的效率。
推荐文章
基于不同隐马尔科夫模型的图像识别方法
隐马尔科夫模型
E-HMM
图像识别
指纹识别
基于离散隐马尔科夫模型的语音识别技术
语音识别
隐马尔科夫模型
动态时间规整
人工神经网络
基于改进隐马尔科夫模型的鲁棒用户行为识别
隐马尔科夫模型
遗传算法
Baum-Welch算法
用户行为识别
基于时变状态转移隐半马尔科夫模型的寿命预测
时变状态转移概率
隐半马尔科夫模型
状态估计
寿命预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于隐马尔科夫模型的中文分词研究
来源期刊 电脑知识与技术:学术交流 学科 工学
关键词 自动分词 隐马尔科夫模型(HMM) N-最短路径粗切分 统计模型
年,卷(期) 2007,(11) 所属期刊栏目
研究方向 页码范围 885-886
页数 2页 分类号 TP391
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 魏晓宁 南通大学计算机科学与技术学院 16 177 7.0 13.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
自动分词
隐马尔科夫模型(HMM)
N-最短路径粗切分
统计模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
论文1v1指导