基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
中医脉象客观化研究的关键在于对各种脉象进行客观检测和正确识别.在长期对中医脉象进行临床检测、采集和分析的基础上,针对中医脉象模糊性强、种类繁多、特征复杂的特点,以及传统识别方法和BP神经网络识别方法的不足,提出了一种基于概率神经网络(Probabilistic Neural Network,简称PNN)的中医脉象识别方法;运用所建立的PNN脉象识别模型对中医常见的12种脉象进行了识别和检验,识别正确率平均达93%(而传统模糊聚类方法的为75%,BP神经网络方法的为87.1%).最后对PNN方法和BP神经网络方法的识别性能做了对比实验,发现在强噪声干扰下PNN方法对脉象的识别正确率远高于BP神经网络方法.
推荐文章
基于粒子群优化BP神经网络的脉象识别方法
脉象识别
粒子群算法
输出误差
误差反向传播算法
神经网络
泛化能力
基于小波包分析和BP神经网络的中医脉象识别方法
脉象识别
BP神经网络
小波包分析
一种基于概率神经网络的目标识别方法
概率神经网络
分类
目标识别
基于神经网络数字识别方法的研究
数字识别
神经网络
粗糙集
特征提取
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于概率神经网络的中医脉象识别方法研究
来源期刊 计算机工程与应用 学科 工学
关键词 中医脉象 模式识别 PNN Bayes准则
年,卷(期) 2007,(20) 所属期刊栏目 工程与应用
研究方向 页码范围 194-196,203
页数 4页 分类号 TP391.4
字数 3732字 语种 中文
DOI 10.3321/j.issn:1002-8331.2007.20.057
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 师义民 西北工业大学应用数学系 175 1114 18.0 21.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (5)
共引文献  (14)
参考文献  (8)
节点文献
引证文献  (13)
同被引文献  (39)
二级引证文献  (44)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2009(3)
  • 引证文献(3)
  • 二级引证文献(0)
2010(2)
  • 引证文献(2)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(1)
  • 引证文献(0)
  • 二级引证文献(1)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(3)
  • 引证文献(0)
  • 二级引证文献(3)
2015(4)
  • 引证文献(1)
  • 二级引证文献(3)
2016(10)
  • 引证文献(4)
  • 二级引证文献(6)
2017(13)
  • 引证文献(1)
  • 二级引证文献(12)
2018(7)
  • 引证文献(0)
  • 二级引证文献(7)
2019(10)
  • 引证文献(0)
  • 二级引证文献(10)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
中医脉象
模式识别
PNN
Bayes准则
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
陕西省自然科学基金
英文译名:Natural Science Basic Research Plan in Shaanxi Province of China
官方网址:
项目类型:
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导