基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 为提取有效的鉴别特征和降低鉴别向量的维数来识别人脸表情图像.方法 将流行学习(Manifold leaming,ML)和半监督学习(Semi-Supervised leaming,SSL)结合起来,利用人脸表情图像数据本身的非线性流形结构信息和部分标签信息来调整点与点之间的距离形成距离矩阵,而后基于被调整的距离矩阵进行线性近邻重建来实现维数约简,提取低维鉴别特征用于人脸表情识别.结果 该方法 能充分利用数据的结构信息和有限的标签信息,使具有标签信息的同类样本之间的距离最小化,不同类数据之间的距离最大化,进而可以有效地提取数据的低维鉴别子流形,使得分类性能要优于非监督的雏数约简方法 .结论 笔者提出的半监督局部线性嵌入算法能有效地提高人脸表情识别的性能.
推荐文章
基于LLE算法的人脸识别方法
子空间分析
局部线性嵌入
非线性降维
人脸识别
基于LLE和LS-SVM的人脸识别方法
人脸识别
主成分分析
局部线性嵌套
最小二乘支持向量机
基于差分纹理的人脸表情识别
面部表情
Delaunay 三角剖分
差分纹理特征
主动形状模型
基于频谱的人脸识别方法
人脸识别
本征脸
LDA
频谱脸
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Semi-Supervised LLE的人脸表情识别方法
来源期刊 沈阳建筑大学学报(自然科学版) 学科 工学
关键词 流形学习 半监督学习 局部线性嵌入 维数约简 人脸表情识别
年,卷(期) 2008,(6) 所属期刊栏目 信息与控制
研究方向 页码范围 1109-1113
页数 5页 分类号 TP391.41
字数 3448字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李见为 重庆大学光电技术及系统教育部重点实验室 93 1608 21.0 37.0
2 黄鸿 重庆大学光电技术及系统教育部重点实验室 73 422 11.0 15.0
3 冯海亮 重庆大学光电技术及系统教育部重点实验室 38 482 11.0 21.0
4 魏明 重庆大学应用技术学院 7 76 4.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (37)
共引文献  (86)
参考文献  (8)
节点文献
引证文献  (10)
同被引文献  (9)
二级引证文献  (12)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(7)
  • 参考文献(2)
  • 二级参考文献(5)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(9)
  • 参考文献(0)
  • 二级参考文献(9)
2006(3)
  • 参考文献(2)
  • 二级参考文献(1)
2007(3)
  • 参考文献(3)
  • 二级参考文献(0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2008(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(3)
  • 引证文献(3)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(3)
  • 引证文献(1)
  • 二级引证文献(2)
2016(3)
  • 引证文献(0)
  • 二级引证文献(3)
2017(3)
  • 引证文献(0)
  • 二级引证文献(3)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
流形学习
半监督学习
局部线性嵌入
维数约简
人脸表情识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
沈阳建筑大学学报(自然科学版)
双月刊
2095-1922
21-1578/TU
大16开
沈阳市浑南新区浑南东路9号
8-44
1979
chi
出版文献量(篇)
3683
总下载数(次)
5
相关基金
重庆市自然科学基金
英文译名:
官方网址:http://law.ddvip.com/law/2006-09/11584979384040.html
项目类型:重点项目
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导