作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种基于最小二乘支持向量机(LS-SVM)回归算法的特征提取新方法,并将其成功应用于柴油凝点近红外(NIR)光谱软测量建模.在该方法中,将特征提取公式表达成与LS-SVM回归算法相同的形式,这样就能通过LS-SVM求取最优的特征投影向量.用一个含120个样本的401维柴油近红外光谱数据集进行测试,通过该方法提取后,原始光谱数据集的特征被降到了6维并保留了原有99.58%的信息.同时,用该数据建立的软测量模型具有更快的学习速度和更高的测量精度.实验结果验证了所提的特征提取新方法应用于近红外光谱特征提取的可行性和有效性.
推荐文章
基于LS-SVM的软测量模型及其工业应用
最小二乘支持向量机
特征提取
软测量
苛性比值
基于离散Curvelet变换和LS-SVM的虹膜特征提取与识别
特征提取
分类识别
离散曲波变换
最小二乘支持向量机
最优二叉树
基于LS-SVM的乙醇浓度软测量在酵母生产中的应用
最小二乘支持向量机(LS-SVM)
乙醇浓度
软测量
LS-SVM在单通道颜色测温中的应用
最小二乘支持向量机
单通道
颜色测温
非线性建模
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于LS-SVM的特征提取及在凝点软测量中的应用
来源期刊 系统仿真学报 学科 工学
关键词 特征提取 主元分析 最小二乘支持向量机 软测量
年,卷(期) 2008,(4) 所属期刊栏目 人工智能与仿真
研究方向 页码范围 917-920,925
页数 5页 分类号 TP18
字数 5040字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴德会 九江学院电子工程系 66 721 15.0 23.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (336)
参考文献  (6)
节点文献
引证文献  (10)
同被引文献  (26)
二级引证文献  (13)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(4)
  • 参考文献(0)
  • 二级参考文献(4)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(4)
  • 参考文献(0)
  • 二级参考文献(4)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(8)
  • 参考文献(1)
  • 二级参考文献(7)
2001(4)
  • 参考文献(1)
  • 二级参考文献(3)
2002(6)
  • 参考文献(1)
  • 二级参考文献(5)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2008(1)
  • 引证文献(1)
  • 二级引证文献(0)
2009(2)
  • 引证文献(2)
  • 二级引证文献(0)
2010(3)
  • 引证文献(3)
  • 二级引证文献(0)
2011(3)
  • 引证文献(2)
  • 二级引证文献(1)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(5)
  • 引证文献(0)
  • 二级引证文献(5)
2014(2)
  • 引证文献(0)
  • 二级引证文献(2)
2017(3)
  • 引证文献(0)
  • 二级引证文献(3)
2018(3)
  • 引证文献(1)
  • 二级引证文献(2)
研究主题发展历程
节点文献
特征提取
主元分析
最小二乘支持向量机
软测量
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
系统仿真学报
月刊
1004-731X
11-3092/V
大16开
北京市海淀区永定路50号院
82-9
1989
chi
出版文献量(篇)
14694
总下载数(次)
35
总被引数(次)
173926
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导