基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为正确预测高炉铁水中硅的质量分数([Si]),提出了一种基于隐Markov模型(HMM)的预测算法.从高炉冶金反应动力学出发,分析了高炉内反应的链接关系,这种链接关系和HMM的原理是一致的.在对系统参数初始化之后,利用重估公式对参数进行训练直至收敛,从而得到系统模型.通过Viterbi算法找出所有训练样本的最大可能状态路径,并计算其似然值.将新样本输入模型得到新的状态路径及其似然值,从训练样本中找出具有相同状态路径或最小偏差似然值的序列,以训练样本下一[Si]值作为新样本下一时刻的预测值.利用该算法对高炉实际生产数据进行仿真,结果表明,与传统的人工神经网络方法相比,该方法能够有效提高预测精度和效率.
推荐文章
基于数据的高炉铁水硅含量预测
硅含量
差分进化
极限学习机
高炉
数据
高炉铁水硅含量序列的支持向量机预测模型
自回归AR(p)模型
主成分分析
支持向量机
炉温预测
基于BP神经网络的高炉铁水硅含量预测模型研究
铁水硅含量
BP神经网络
预测模型
基于bootstrap的高炉铁水硅含量预测
高炉
bootstrap
预测区间
可信度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于隐Markov模型的高炉铁水硅质量分数预测算法
来源期刊 浙江大学学报(工学版) 学科 工学
关键词 高炉炼铁 冶金反应动力学 隐Markov模型 数据模式
年,卷(期) 2008,(5) 所属期刊栏目 自动化技术、计算机技术
研究方向 页码范围 742-746
页数 5页 分类号 TG250.2
字数 4654字 语种 中文
DOI 10.3785/j.issn.1008-973X.2008.05.004
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 曾九孙 浙江大学系统优化技术研究所 4 99 3.0 4.0
2 刘祥官 浙江大学系统优化技术研究所 31 549 14.0 23.0
3 罗世华 江西财经大学信息管理学院 7 105 4.0 7.0
4 郜传厚 浙江大学系统优化技术研究所 10 173 7.0 10.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (5)
共引文献  (18)
参考文献  (8)
节点文献
引证文献  (14)
同被引文献  (3)
二级引证文献  (8)
1989(2)
  • 参考文献(1)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(3)
  • 引证文献(3)
  • 二级引证文献(0)
2012(3)
  • 引证文献(3)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(4)
  • 引证文献(1)
  • 二级引证文献(3)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(3)
  • 引证文献(2)
  • 二级引证文献(1)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(3)
  • 引证文献(2)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
高炉炼铁
冶金反应动力学
隐Markov模型
数据模式
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(工学版)
月刊
1008-973X
33-1245/T
大16开
杭州市浙大路38号
32-40
1956
chi
出版文献量(篇)
6865
总下载数(次)
6
总被引数(次)
81907
相关基金
浙江省自然科学基金
英文译名:
官方网址:http://www.zjnsf.net/
项目类型:一般项目
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导