基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文针对目前电信行业中一个日益严峻的问题:客户离网进行期究,以电信行业为背景,通过收集客户的基本教据、消费数据和缴费行为等数据,建立离网客户的流失预测模型.进行客户流失的因素分析以及流失预测。以某电信分公司决策支撑系统为背景,通过在电信一年半时间的领域调研和开发实践,以此为基础,使用了统计分析和数据挖掘的技术,对PAS客户流失主题进行了较为完善、深入的分析与研究,为电信经营分析系统作了有益的尝试与探索.针对PAS客户流失分祈主题,本文选取了3个月的PAS在网用户和流失用户及其流失前的历史消费信息为样本,确定了个体样本影响流失的基本特征向量和目标变量.通过对大量相关技术和统计方法的研究,最终确定了Clementine的神经网络模型来作为电信客户流失的预测模型.实践证明,本论文整体的技术路线是可行的,神经网络模型对电信客户流失预测有较高的准确性,所发现的知识具有一定的合理性和参考价值,对相关领域的研充起到了一定的推动作用.
推荐文章
电信客户流失的组合预测模型
客户流失
预测模型
电信企业
决策树C5.0
BP神经网络
Logistic回归算法
改进神经网络的电子商务客户流失估计
改进神经网络
电子商务
模型构建
客户流失
数据挖掘
价值分析
基于深度神经网络的客户流失预测模型
深度学习
深度神经网络
客户流失
电信
基于多模式的电信客户流失预测模型
客户流失
电信客户
多模式
分类预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Clementine神经网络的电信客户流失模型应用
来源期刊 电脑应用技术 学科 工学
关键词 数据挖掘 客户流失 统计分析 神经网络
年,卷(期) 2009,(1) 所属期刊栏目
研究方向 页码范围 7-12
页数 6页 分类号 TP18
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 胡建华 昆明理工大学信息与自动化学院 45 199 8.0 13.0
2 周海河 昆明理工大学信息与自动化学院 18 63 5.0 7.0
3 颜昌沁 昆明理工大学信息与自动化学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
数据挖掘
客户流失
统计分析
神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑应用技术
不定期
合肥工业大学院内52号信箱 微型计算机应
出版文献量(篇)
439
总下载数(次)
2
总被引数(次)
0
论文1v1指导