基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对密闭鼓风炉熔炼过程工艺复杂、工况变化较大的特点,提出应用粗糙集(RS)和最小二乘支持向量机(LS-SVM)进行鼓风炉故障诊断的方法.该方法首先利用RS对炉子的故障样本进行知识约简,获得各故障类型的征兆最小条件属性作为特征向量,然后,输入到由多个最小二乘支持向量机构成的多故障分类器中进行故障识别和分类.研究结果表明:该方法具有较强的泛化能力,诊断准确率达到90%以上.
推荐文章
基于ELMD与LS-SVM的滚动轴承故障诊断方法
ELMD
模式混淆
LS-SVM
滚动轴承
故障诊断
基于LS-SVM ARX模型的除湿机故障诊断
故障诊断
除湿机
最小二乘支持向量机
外加输入自回归模型
基于小波包分析和LS-SVM的柴油机故障诊断方法
柴油机
最小二乘支持向量机
故障诊断
小波包
基于LS-SVM和D-S证据理论的轴承故障诊断
信息融合
滚动轴承故障诊断
LS-SVM
D-S证据理论
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于RS与LS-SVM多分类法的故障诊断方法及其应用
来源期刊 中南大学学报(自然科学版) 学科 工学
关键词 粗糙集 最小二乘支持向量机 多类分类器 故障诊断
年,卷(期) 2009,(2) 所属期刊栏目 机械工程·控制科学与工程
研究方向 页码范围 447-451
页数 5页 分类号 TP277
字数 4435字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 阳春华 中南大学信息科学与工程学院 389 3229 27.0 37.0
2 桂卫华 中南大学信息科学与工程学院 695 7452 38.0 56.0
3 蒋少华 中南大学信息科学与工程学院 8 80 5.0 8.0
7 戴贤江 中南大学信息科学与工程学院 2 19 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (24)
共引文献  (74)
参考文献  (9)
节点文献
引证文献  (18)
同被引文献  (62)
二级引证文献  (72)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(1)
  • 二级参考文献(1)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(4)
  • 参考文献(1)
  • 二级参考文献(3)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(5)
  • 参考文献(3)
  • 二级参考文献(2)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(3)
  • 引证文献(2)
  • 二级引证文献(1)
2012(4)
  • 引证文献(4)
  • 二级引证文献(0)
2013(8)
  • 引证文献(2)
  • 二级引证文献(6)
2014(7)
  • 引证文献(3)
  • 二级引证文献(4)
2015(8)
  • 引证文献(1)
  • 二级引证文献(7)
2016(13)
  • 引证文献(1)
  • 二级引证文献(12)
2017(16)
  • 引证文献(1)
  • 二级引证文献(15)
2018(16)
  • 引证文献(2)
  • 二级引证文献(14)
2019(12)
  • 引证文献(2)
  • 二级引证文献(10)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
粗糙集
最小二乘支持向量机
多类分类器
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中南大学学报(自然科学版)
月刊
1672-7207
43-1426/N
大16开
湖南省长沙市中南大学校内
42-19
1956
chi
出版文献量(篇)
7515
总下载数(次)
5
总被引数(次)
79127
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导