基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
从体系结构、硬件构成、网络结构和软件设计等几个方面来看,大坝监测自动化系统采集的数据会失真,针对以往监测数据验证方法存在的缺陷,提出了基于相空间重构和贝叶斯框架最小二乘支持向量机(BLS-SVM)相结合的监测物理量数据验证方法。采用LS-SVM构建了3种预测器,应用于单监测物理量和多监测物理量输出系统。实例结果证明了所提出的方案的有效性。
推荐文章
状态时间序列预测的贝叶斯最小二乘支持向量机方法
最小二乘支持向量机
贝叶斯证据框架
电子系统
雷达发射机
状态时间序列预测
贝叶斯证据框架下最小二乘支持向量机的软件老化检测方法
软件老化
最小二乘支持向量机
贝叶斯证据框架
稀疏最小二乘支持向量机及其应用研究
最小二乘支持向量机
核偏最小二乘辨识
智能建模
基于最小二乘支持向量机的大坝变形预测研究
大坝变形
最小二乘支持向量机
优化
预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 贝叶斯最小二乘支持向量机在大坝监测自动化数据验证中的应用
来源期刊 水电自动化与大坝监测 学科 工学
关键词 大坝安全监测 数据验证 贝叶斯框架 最小二乘支持向量机
年,卷(期) 2009,(3) 所属期刊栏目
研究方向 页码范围 46-50
页数 5页 分类号 TV698.1
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 朱伟宾 7 8 1.0 2.0
2 赵建华 4 8 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (26)
共引文献  (1)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
大坝安全监测
数据验证
贝叶斯框架
最小二乘支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
水电自动化与大坝监测
双月刊
1671-3893
32-1641/TV
南京市南瑞路8号
出版文献量(篇)
2990
总下载数(次)
1
总被引数(次)
0
论文1v1指导