基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了克服以往人脸识别方法因特征提取带来的信息损失与不确定性因素,提出了一种应用于复杂场景中人脸识别方法,这种方法不需要进行特征提取.先对整幅图像使用选择性注意方法,在得到的显著区域中利用Adaboost算法进行人脸搜索与定位,最后将可能包含人脸区域的所有像素全部输入训练好的部分连接神经网络(Parcone)模型进行识别.整个识别过程全部自动完成,不需人工干预,也不必对图像进行预处理.通过利用MIT-CBCL人脸数据库和自建图像库进行的仿真实验表明,该人脸识别方法在复杂背景中具有较高的识别率,可适用于其他类型的目标识别.
推荐文章
基于选择性搜索和卷积神经网络的人脸检测
卷积神经网络
选择性搜索
人脸检测
Gabor核
基于NMF和LVQ神经网络的人脸识别
人脸识别
学习矢量量化
神经网络
分类
基于部分连接神经网络的序列数据分类算法研究
部分连接神经网络
序列数据
分类算法
方形基函数
基于卷积神经网络的人脸性别识别
人脸性别识别
卷积神经网络
稀疏连接
权值共享
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于选择性注意和部分连接神经网络的人脸识别
来源期刊 厦门大学学报(自然科学版) 学科 工学
关键词 选择性注意 Parcone Adaboost 人脸识别 特征提取
年,卷(期) 2009,(4) 所属期刊栏目 研究论文
研究方向 页码范围 499-503
页数 5页 分类号 TP391.41
字数 3883字 语种 中文
DOI 10.3321/j.issn:0438-0479.2009.04.010
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 施明辉 厦门大学信息科学与技术学院 9 83 5.0 9.0
2 潘伟 厦门大学信息科学与技术学院 14 51 5.0 6.0
3 杨晔 厦门大学信息科学与技术学院 2 8 1.0 2.0
4 Hugo de GARIS 厦门大学信息科学与技术学院 1 8 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (180)
参考文献  (8)
节点文献
引证文献  (8)
同被引文献  (4)
二级引证文献  (7)
1991(3)
  • 参考文献(1)
  • 二级参考文献(2)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(3)
  • 参考文献(1)
  • 二级参考文献(2)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(5)
  • 参考文献(1)
  • 二级参考文献(4)
1998(4)
  • 参考文献(1)
  • 二级参考文献(3)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(2)
  • 引证文献(2)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(4)
  • 引证文献(0)
  • 二级引证文献(4)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
选择性注意
Parcone
Adaboost
人脸识别
特征提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
厦门大学学报(自然科学版)
双月刊
0438-0479
35-1070/N
大16开
福建省厦门市厦门大学囊萤楼218-221室
34-8
1931
chi
出版文献量(篇)
4740
总下载数(次)
7
总被引数(次)
51714
相关基金
福建省自然科学基金
英文译名:Natural Science Foundation of Fujian Province of China
官方网址:http://www.fjinfo.gov.cn/fz/zrjj.htm
项目类型:重大项目
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导