基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出基于最小二乘支持向量机在线算法的α阶逆控制方法.引入系统控制误差不敏感函数,在控制误差大于不敏感函数时,利用增量-剪枝学习算法,对已建立的离线逆控制器实施在线学习,以增强控制系统的鲁棒性.仿真结果表明:在系统没有受到噪声干扰时,在线逆控制器可以很好地使被控对象跟踪参考输入信号;在系统受到噪声干扰时,在线逆控制器比离线逆控制器具有更强的鲁棒性.
推荐文章
基于在线LS-SVM的网络预测控制系统
网络控制系统
预测控制
在线最小二乘支持向量机
核函数
基于LS-SVM的在线文本识别方法
支持向量机
在线
文本
系统识别
基于LS-SVM逆系统的焦炉集气管压力系统解耦控制
集气管压力
最小二乘支持向量机
逆系统
解耦控制
基于PSO滚动优化的LS-SVM预测控制
非线性模型预测控制
非线性建模
最小二乘支持向量机
粒子群算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于在线LS-SVM的α阶逆控制
来源期刊 西南交通大学学报 学科 工学
关键词 最小二乘支持向量机 逆控制 α阶逆系统 增量-剪枝算法 在线学习
年,卷(期) 2009,(3) 所属期刊栏目
研究方向 页码范围 375-379
页数 5页 分类号 TP273
字数 2457字 语种 中文
DOI 10.3969/j.issn.0258-2724.2009.03.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 肖建 西南交通大学电气工程学院 232 2867 26.0 38.0
2 刘陆洲 西南交通大学电气工程学院 11 52 5.0 6.0
3 王嵩 西南交通大学电气工程学院 17 103 6.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (20)
参考文献  (6)
节点文献
引证文献  (4)
同被引文献  (18)
二级引证文献  (19)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(2)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(5)
  • 参考文献(1)
  • 二级参考文献(4)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(4)
  • 引证文献(1)
  • 二级引证文献(3)
2013(3)
  • 引证文献(2)
  • 二级引证文献(1)
2014(3)
  • 引证文献(0)
  • 二级引证文献(3)
2015(4)
  • 引证文献(0)
  • 二级引证文献(4)
2016(3)
  • 引证文献(0)
  • 二级引证文献(3)
2017(3)
  • 引证文献(1)
  • 二级引证文献(2)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
最小二乘支持向量机
逆控制
α阶逆系统
增量-剪枝算法
在线学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西南交通大学学报
双月刊
0258-2724
51-1277/U
大16开
四川省成都市二环路北一段
62-104
1954
chi
出版文献量(篇)
3811
总下载数(次)
4
总被引数(次)
51589
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导