作者:
原文服务方: 湖南大学学报(自然科学版)       
摘要:
基于传感器阵列和神经网络构造智能系统用于检测混合气体的低质量分数.传感器阵列获取质量分数为1×10-6~5×10-6范围的H2,C2H4,C2H2混合气体响应和质量分数为5×10-5~3×10-4范围的CO响应.通过RBF神经网络学习改善低质量分数混合气体检测的灵敏度.把传感器响应作为神经网络输入,神经网络输出为H2,C2H4,C2H2和CO的质量分数.实例分析表明,系统能较好地克服低质量分数混合气体检测过程中普遍存在的交叉灵敏度,得到满意的检测结果.
推荐文章
混合气体起爆系统研究
混合气体起爆系统
气体爆炸
爆炸极限
起爆箱
基于GA-RBF的煤矿机器人井下混合气体检测系统的研究
GA-RBF
煤矿机器人
混合气体
井下检测
基于RBF神经网络的单一催化传感器检测混合气体研究
气体分析
催化传感器
RBF神经网络
恒温检测
基于RBF和Elman混合神经网络的入侵检测系统的研究
入侵检测系统
异常检测
误用检测
混合神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于RBF神经网络的混合气体智能检测系统研究
来源期刊 湖南大学学报(自然科学版) 学科
关键词 智能系统 交叉灵敏度 传感器阵列 RBF神经网络
年,卷(期) 2009,(7) 所属期刊栏目 计算机科学
研究方向 页码范围 82-84
页数 3页 分类号 TP835
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 常炳国 湖南大学软件学院 20 118 7.0 10.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (5)
节点文献
引证文献  (11)
同被引文献  (32)
二级引证文献  (45)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(3)
  • 参考文献(3)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(2)
  • 引证文献(1)
  • 二级引证文献(1)
2011(4)
  • 引证文献(2)
  • 二级引证文献(2)
2012(8)
  • 引证文献(3)
  • 二级引证文献(5)
2013(12)
  • 引证文献(3)
  • 二级引证文献(9)
2014(4)
  • 引证文献(0)
  • 二级引证文献(4)
2015(7)
  • 引证文献(0)
  • 二级引证文献(7)
2016(8)
  • 引证文献(1)
  • 二级引证文献(7)
2017(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(5)
  • 引证文献(0)
  • 二级引证文献(5)
2019(4)
  • 引证文献(1)
  • 二级引证文献(3)
研究主题发展历程
节点文献
智能系统
交叉灵敏度
传感器阵列
RBF神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
湖南大学学报(自然科学版)
月刊
1674-2974
43-1061/N
16开
1956-01-01
chi
出版文献量(篇)
4768
总下载数(次)
0
总被引数(次)
41941
相关基金
国家科技支撑计划
英文译名:
官方网址:http://kjzc.jhgl.org/
项目类型:重大项目
学科类型:能源
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导