基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了利用ROC曲线下的面积(AUC),更好地评价多类SVM学习效果,提出了MOSMAUC(multi-objectiveoptimizesmulti-classSVMbasedonAUC)算法.该算法采用AUC作为评价标准,利用多目标优化算法作为SVM参数的优化方法,避免优化对象的AUC值过低问题,因为在多类分类学习中任何一个两类分类的AUC值太低,都会影响整体学习的效果.实验结果表明,提出的优化方法改进了算法的学习能力,取得了较好的学习效果.
推荐文章
基于仿射聚类的主动SVM多类分类方法
仿射传播聚类
多分类支持向量机
主动学习算法
训练样本点优化
多蚁群分级优化的多目标求解方法
多蚁群算法
多目标优化
函数优化
动态距离调整
基于蚁群聚类的多目标环形分类的方法研究
蚁群聚类
环形分类
引力场
斥力场
基于多目标进化算法的多距离聚类研究
相似性度量
距离矩阵
多目标RM-MEDA进化算法
标签—实数编码
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多目标优化的SVM多类分类方法
来源期刊 计算机工程与设计 学科 工学
关键词 支持向量机 ROC曲线下面积 多目标优化 多类分类学习 Pareto最优解
年,卷(期) 2009,(8) 所属期刊栏目 人工智能
研究方向 页码范围 1960-1962,1973
页数 4页 分类号 TP301
字数 3906字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张晓龙 武汉科技大学计算机科学与技术学院 49 652 13.0 24.0
2 邱泽伟 武汉科技大学计算机科学与技术学院 1 8 1.0 1.0
3 张晓芳 武汉科技大学计算机科学与技术学院 2 8 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (59)
参考文献  (7)
节点文献
引证文献  (8)
同被引文献  (10)
二级引证文献  (32)
1960(2)
  • 参考文献(0)
  • 二级参考文献(2)
1982(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(5)
  • 参考文献(2)
  • 二级参考文献(3)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(0)
  • 二级引证文献(1)
2014(2)
  • 引证文献(1)
  • 二级引证文献(1)
2015(9)
  • 引证文献(1)
  • 二级引证文献(8)
2016(7)
  • 引证文献(1)
  • 二级引证文献(6)
2017(8)
  • 引证文献(1)
  • 二级引证文献(7)
2018(5)
  • 引证文献(0)
  • 二级引证文献(5)
2019(4)
  • 引证文献(0)
  • 二级引证文献(4)
研究主题发展历程
节点文献
支持向量机
ROC曲线下面积
多目标优化
多类分类学习
Pareto最优解
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与设计
月刊
1000-7024
11-1775/TP
大16开
北京142信箱37分箱
82-425
1980
chi
出版文献量(篇)
18818
总下载数(次)
45
总被引数(次)
161677
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导