基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This paper proposes machine learning techniques to discover knowledge in a dataset in the form of if-then rules for the purpose of formulating queries for validation of a Bayesian belief network model of the same data. Although do-main expertise is often available, the query formulation task is tedious and laborious, and hence automation of query formulation is desirable. In an effort to automate the query formulation process, a machine learning algorithm is lev-eraged to discover knowledge in the form of if-then rules in the data from which the Bayesian belief network model under validation was also induced. The set of if-then rules are processed and filtered through domain expertise to identify a subset that consists of “interesting” and “significant” rules. The subset of interesting and significant rules is formulated into corresponding queries to be posed, for validation purposes, to the Bayesian belief network induced from the same dataset. The promise of the proposed methodology was assessed through an empirical study performed on a real-life dataset, the National Crime Victimization Survey, which has over 250 attributes and well over 200,000 data points. The study demonstrated that the proposed approach is feasible and provides automation, in part, of the query formulation process for validation of a complex probabilistic model, which culminates in substantial savings for the need for human expert involvement and investment.
推荐文章
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Knowledge Discovery for Query Formulation for Validation of a Bayesian Belief Network
来源期刊 智能学习系统与应用(英文) 学科 医学
关键词 Rule Induction Semi-Automated QUERY Generation BAYESIAN Net VALIDATION Knowledge Acquisition BOTTLENECK CRIME Data National CRIME VICTIMIZATION Survey
年,卷(期) 2010,(3) 所属期刊栏目
研究方向 页码范围 156-166
页数 11页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Rule
Induction
Semi-Automated
QUERY
Generation
BAYESIAN
Net
VALIDATION
Knowledge
Acquisition
BOTTLENECK
CRIME
Data
National
CRIME
VICTIMIZATION
Survey
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能学习系统与应用(英文)
季刊
2150-8402
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
166
总下载数(次)
0
总被引数(次)
0
论文1v1指导