基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了基于惩罚约束问题的群体智能聚类算法PCSI,不必穷尽搜索样本集,利用粒子群算法的优化搜索机制在数据集中有指导地随机搜索聚类中心向量,能够以较小的计算代价确定样本集的类别数.有约束优化过程的罚函数为两部分之和:①目标函数,各样本与其类别中心的均方误差;②自适应惩罚项,即数据集的边界作为粒子群移动的约束条件,对约束违反程度进行惩罚.为降低不平衡数据集的影响,按照数据集的方差和模糊高斯函数,将样本到其类别中心的距离进行模糊映射,归一化到[0,1]区间.粒子群优化方法免去了传统方法的求导计算.聚类IRIS数据集和Reuters-21578文档集以验证算法的有效性,对大规模数据聚类有明显优势.
推荐文章
粒子群聚类算法综述
聚类分析
群智能
粒子群优化算法
基于AC与LmaxRPC的自适应约束传播求解算法
人工智能
约束程序
约束满足问题
自适应约束求解
约束传播
基于改进的简化粒子群聚类算法
简化粒子群算法
粒密度
最大距离积法
随机分布
极值扰动算子
K-means算法
基于SNP系统的改进粒子群聚类算法
聚类
K-means算法
PSO算法
脉冲神经膜系统
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 自适应约束惩罚的粒子群聚类算法
来源期刊 郑州大学学报(理学版) 学科 工学
关键词 粒子群算法 智能优化 自适应罚函数
年,卷(期) 2010,(2) 所属期刊栏目
研究方向 页码范围 47-52
页数 分类号 TP301.6
字数 4523字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 徐宁 19 80 5.0 8.0
2 周俊武 32 249 8.0 14.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (7)
共引文献  (12)
参考文献  (4)
节点文献
引证文献  (4)
同被引文献  (7)
二级引证文献  (4)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(3)
  • 引证文献(2)
  • 二级引证文献(1)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
粒子群算法
智能优化
自适应罚函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
郑州大学学报(理学版)
季刊
1671-6841
41-1338/N
大16开
郑州市高新技术开发区科学大道100号
36-191
1962
chi
出版文献量(篇)
2278
总下载数(次)
0
论文1v1指导