目标检测和识别是图像分析和理解的核心问题,构建了一种仿人眼视觉特性的视觉检测和目标识别体系结构及感知计算模式.借鉴人眼视觉信息获取与处理的变空间分辨率机理和稀疏性,构建大场景(LF)子系统和小场景(SF)子系统分别获取多分辨率、多尺度和不同精细粒度的初级视觉特征信息.提出了一种在小波域下受视觉注意力机制引导的LF子系统感知场景整体统计特性的目标检测和定位方法,由SF子系统集中对目标形成凝视并提取细粒度特征信息,对特征进行整合,形成兴趣图,然后采用非均匀采样、多尺度分析和胜者为王(Winner take all机制)产生目标间的竞争实现分类识别.仿真实验结果表明,统计分析方法降低了信息冗余,快速准确地检测出感兴趣目标区域,而基于注意机制的目标识别在多类目标分类中达到94.40%的总准确率.