基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
中文分词和命名实体识别经常被视为2个独立的任务.该文提出一种基于最大间隔Markov网络模型(M3N)的中文分词和命名实体识别一体化方法,将二者统一在一个字序列标注框架下,进行联合训练和测试.在SIGHAN_2005分词数据集上的实验结果显示,与基于条件随机场模型的分词器相比,基于M2N的分词器加权综合值提高0.3%~2.O%.在SIGHAN_2005分词数据集和SIGHAN_2006命名实体数据集上进行测试的结果显示.与分步方法相比,一体化方法能够同时提高中文分词和命名实体识别的性能,加权综合值的提高幅度分别为1.5%~5.5%和5.7%~7.9%.同时,还基于分词任务考察了特征模版和不合法序列对M3N性能的影响.
推荐文章
基于位置敏感Embedding的中文命名实体识别
命名实体识别
表示学习
Embedding
多尺度聚类
条件随机场
基于BLSTM-CRF中文领域命名实体识别框架设计
BLSTM-CRF
CBOW
Boson
命名实体识别
一种基于命名实体识别的需求跟踪方法
需求跟踪
命名实体识别
语义聚类
自然语言处理
权重计算
基于条件随机场的汉语命名实体识别
可视化工作室2008
条件随机场
汉语分词
命名实体识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于M3N的中文分词与命名实体识别一体化
来源期刊 清华大学学报(自然科学版) 学科 工学
关键词 最大间隔Markov网络 中文分词 命名实体识别 特征模版 机器学习
年,卷(期) 2010,(5) 所属期刊栏目
研究方向 页码范围 758-762,767
页数 6页 分类号 TP391.1
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孙茂松 64 2166 18.0 46.0
2 乔维 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (10)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1995(2)
  • 参考文献(1)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(3)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
最大间隔Markov网络
中文分词
命名实体识别
特征模版
机器学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
清华大学学报(自然科学版)
月刊
1000-0054
11-2223/N
大16开
北京市海淀区清华园清华大学
2-90
1915
chi
出版文献量(篇)
7846
总下载数(次)
26
总被引数(次)
132043
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
国家高技术研究发展计划(863计划)
英文译名:The National High Technology Research and Development Program of China
官方网址:http://www.863.org.cn
项目类型:重点项目
学科类型:信息技术
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导