基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
流形学习以发现非线性高维数据的本质维数为目标,使其更适合数据分析和高维数据的降维.图像检索中"语义鸿沟"问题指的是高维数据空间与低维的语义子空间之间的鸿沟,虽然利用相关反馈机制可以缩小这种鸿沟提高准确率,但是因为反馈图像数目较少,图像特征维数相对较高,会容易产生维数灾难问题.流形学习的引入为解决这一难题带来了新的希望,因为通过流形学习的方法学习高维图像特征数据的本征维数用于图像检索,大大提高了检索性能.基于流形学习的图像检索算法都是半监督的流形学习,充分利用了反馈信息,学习查询图像的语义子空间,有效的实现了高维数据的降维.
推荐文章
有监督流形学习算法SLLESVM在图像检索中的应用
有监督
流行学习
SLLESVM
图像检索
流形学习中的算法研究
流形学习
主流形
局部线性嵌套
等度规映射
变分法
互信息
基于核融合的多信息流形学习算法
核融合
流形学习
多信息
基于流形学习的图像检索研究进展
计算机应用技术
流形学习
流形排序
基于内容的图像检索
语义子
空间学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于流形学习的图像检索算法研究
来源期刊 山东大学学报(工学版) 学科 工学
关键词 图像检索 流形学习 相关反馈 数据降维
年,卷(期) 2010,(5) 所属期刊栏目
研究方向 页码范围 129-136
页数 分类号 TP391
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨育彬 南京大学软件新技术国家重点实验室 41 906 14.0 29.0
2 贺广南 南京大学软件新技术国家重点实验室 5 50 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (67)
参考文献  (12)
节点文献
引证文献  (10)
同被引文献  (32)
二级引证文献  (22)
1989(2)
  • 参考文献(1)
  • 二级参考文献(1)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(2)
  • 参考文献(2)
  • 二级参考文献(0)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(3)
  • 参考文献(2)
  • 二级参考文献(1)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(6)
  • 参考文献(2)
  • 二级参考文献(4)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(3)
  • 引证文献(3)
  • 二级引证文献(0)
2012(1)
  • 引证文献(0)
  • 二级引证文献(1)
2013(3)
  • 引证文献(1)
  • 二级引证文献(2)
2014(4)
  • 引证文献(2)
  • 二级引证文献(2)
2015(5)
  • 引证文献(1)
  • 二级引证文献(4)
2016(6)
  • 引证文献(2)
  • 二级引证文献(4)
2017(6)
  • 引证文献(1)
  • 二级引证文献(5)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
图像检索
流形学习
相关反馈
数据降维
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山东大学学报(工学版)
双月刊
1672-3961
37-1391/T
大16开
济南市经十路17923号
24-221
1956
chi
出版文献量(篇)
3095
总下载数(次)
14
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导