原文服务方: 中国机械工程       
摘要:
传感器阵列可同时对多个信号进行测量,而对多个输入信号进行解耦和并行提取是其关键.提出一种基于最小二乘支持向量机(LS-SVM)的传感器阵列输入信号逆向提取智能方法,该方法基于结构风险最小化,能够逼近任意复杂的非线性关系且泛化能力强.仿真试验表明,该方法具有拟合精度高、运算速度快、容易实现等优点,适用于对传感器阵列多个输入信号进行解耦和并行提取.
推荐文章
基于EMD近似熵和LS-SVM的机械故障智能诊断
经验模式分解(empirical mode decomposition,EMD)
近似熵
最小二乘支持向量机(least square support vector machine,LS-SVM)故障诊断
基于LS-SVM的非线性多功能传感器信号重构方法研究
多功能传感器
信号重构
最小二乘支持向量机
交叉验证
基于LLE和LS-SVM的人脸识别方法
人脸识别
主成分分析
局部线性嵌套
最小二乘支持向量机
基于ELMD与LS-SVM的滚动轴承故障诊断方法
ELMD
模式混淆
LS-SVM
滚动轴承
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于LS-SVM的传感器阵列多维信号智能提取方法研究
来源期刊 中国机械工程 学科
关键词 传感器阵列 信号提取 最小二乘支持向量机(LS-SVM) 拟合
年,卷(期) 2010,(6) 所属期刊栏目 科学基金
研究方向 页码范围 711-714,720
页数 5页 分类号 TP393
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孙林 23 198 9.0 14.0
2 杨世元 53 456 11.0 18.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (4)
共引文献  (2)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(4)
  • 参考文献(3)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
传感器阵列
信号提取
最小二乘支持向量机(LS-SVM)
拟合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国机械工程
月刊
1004-132X
42-1294/TH
大16开
湖北省武汉市洪山区南李路湖北工业大学
1990-01-01
中文
出版文献量(篇)
13171
总下载数(次)
0
总被引数(次)
206238
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导