基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
聚类算法广泛应用于入侵检测系统(ID6)的数据挖掘中.虽然K-MEANS算法是最为经典的聚类算法之一,但是由于入侵检测系统的数据集具有特殊性,直接在其上进行K-MEANS聚类的效果不佳.为了提高K-MEANS在IDS数据集上的聚类准确性,引入一种数据预处理方法.该方法对IDS的记录特征做标准化处理,使原本取值范围差异很大的数值型特征在同一个区间内取值,排除原始数据中不同度量带来的不良影响,从而优化聚类的效果.仿真实验表明,K-MEANS算法对预处理后的IDS数据集的聚类准确度有很大的提高.
推荐文章
K-means算法在计算机基础分层教学中的应用研究
K临近算法
数据挖掘
分层教学
聚类
改进的k-means算法在入侵检测中的应用
入侵检测
聚类分析
k均值
相异度
基于Spark的并行K-means算法研究
Spark
K-means
PSO
迭代计算
k-means算法的研究与改进
聚类
划分方法
数据样本
阈值
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 K-MEANS算法在IDS中的应用研究
来源期刊 计算机技术与发展 学科 工学
关键词 数据挖掘 入侵检测系统 K均值聚类 预处理
年,卷(期) 2010,(7) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 129-131,封3
页数 分类号 TP311
字数 2333字 语种 中文
DOI 10.3969/j.issn.1673-629X.2010.07.033
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李玲娟 南京邮电大学计算机学院 88 927 14.0 26.0
2 李冰 南京邮电大学计算机学院 3 18 3.0 3.0
3 薛明 南京邮电大学计算机学院 9 31 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (768)
参考文献  (5)
节点文献
引证文献  (3)
同被引文献  (16)
二级引证文献  (6)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(6)
  • 参考文献(2)
  • 二级参考文献(4)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(2)
  • 引证文献(2)
  • 二级引证文献(0)
2013(1)
  • 引证文献(0)
  • 二级引证文献(1)
2014(3)
  • 引证文献(0)
  • 二级引证文献(3)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
数据挖掘
入侵检测系统
K均值聚类
预处理
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导