基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
K-means算法作为聚类分析算法,已被广泛地应用到诸多领域。本文研究了K-means算法的基本原理,并将其应用到高校学生入学信息分析中。高考学生入学的相关信息包含了大量重要的学习及其他方面的信息,对这些数据信息进行分析和研究,有助于教师对不同类别的学生进行不同方式的教学,做到因材施教。首先对学生的入学信息数据进行预处理,然后使用K-means算法,对学生信息进行分类评价;最后利用所获得的分类结果指导学生在大学期间的学习方向以及教师对学生的培养工作。
推荐文章
K-means聚类算法的研究
数据挖掘
K-means算法
初始聚类中心
聚类分析
基于变异的k-means聚类算法
聚类
mk-means算法
变异
K-means聚类算法初始中心选择研究
K-means聚类算法
K个聚类中心
密度参数
K-means算法改进
基于深度信念网络的K-means聚类算法研究
K-means算法
深度信念网络
受限玻尔兹曼机
高维数据
聚类分析
FCM算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 K-means聚类算法研究
来源期刊 长春师范学院学报:自然科学版 学科 工学
关键词 聚类 K-MEANS 学生信息
年,卷(期) 2011,(1) 所属期刊栏目
研究方向 页码范围 1-4
页数 4页 分类号 TF27
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
聚类
K-MEANS
学生信息
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
长春师范学院学报:自然科学版
双月刊
1008-178X
22-1276/G4
吉林省长春市长吉北路677号
出版文献量(篇)
3286
总下载数(次)
0
总被引数(次)
0
论文1v1指导