基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为解决目标数未知或随时间变化的多目标跟踪问题,通常将多目标状态和观测数据表示为随机集形式,通过Cardinalized概率假设密度(CPHD)滤波,递推计算目标的强度(即概率假设密度,PHD)及目标数的概率分布.然而对于被动测角的非线性跟踪问题,CPHD无法获得闭合解.为此,本文提出一种新的高斯混合粒子CPHD算法,利用高斯混合近似PHD,避免了用聚类确定目标状态,同时,将拟蒙特卡罗(QMC)积分方法引入计算目标状态的预测和更新分布,取得了良好的效果.
推荐文章
多目标跟踪的高斯混合概率假设密度滤波算法
随机有限集
多目标跟踪
高斯混合
概率假设密度
后向预测高斯混合概率假设密度滤波算法
多目标跟踪
无序量测
单步延迟
高斯混合
后向预测
多扩展目标的高斯混合概率假设密度滤波器
扩展目标跟踪
高斯混合概率假设密度
随机超曲面模型
形状估计
应用Dirichlet分布的概率假设密度多目标跟踪
多目标跟踪
概率假设密度
Dirichlet分布
状态提取
k-d树
期望极大化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 高斯混合粒子Cardinalized概率假设密度滤波被动测角多目标跟踪
来源期刊 控制理论与应用 学科 工学
关键词 多目标跟踪 随机集 Cardinalized概率假设密度 被动测角 拟蒙特卡罗
年,卷(期) 2011,(1) 所属期刊栏目 论文与报告
研究方向 页码范围 46-52
页数 分类号 TN953
字数 5946字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 姬红兵 西安电子科技大学电子工程学院 193 2504 25.0 36.0
2 张俊根 西安电子科技大学电子工程学院 9 181 8.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (17)
共引文献  (13)
参考文献  (12)
节点文献
引证文献  (15)
同被引文献  (3)
二级引证文献  (33)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(3)
  • 参考文献(2)
  • 二级参考文献(1)
2004(3)
  • 参考文献(2)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(3)
  • 参考文献(2)
  • 二级参考文献(1)
2008(4)
  • 参考文献(3)
  • 二级参考文献(1)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(5)
  • 引证文献(5)
  • 二级引证文献(0)
2013(2)
  • 引证文献(1)
  • 二级引证文献(1)
2014(7)
  • 引证文献(2)
  • 二级引证文献(5)
2015(5)
  • 引证文献(2)
  • 二级引证文献(3)
2016(8)
  • 引证文献(2)
  • 二级引证文献(6)
2017(8)
  • 引证文献(1)
  • 二级引证文献(7)
2018(5)
  • 引证文献(0)
  • 二级引证文献(5)
2019(8)
  • 引证文献(2)
  • 二级引证文献(6)
研究主题发展历程
节点文献
多目标跟踪
随机集
Cardinalized概率假设密度
被动测角
拟蒙特卡罗
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
控制理论与应用
月刊
1000-8152
44-1240/TP
大16开
广州市五山华南理工大学内
46-11
1984
chi
出版文献量(篇)
4979
总下载数(次)
16
总被引数(次)
72515
论文1v1指导