定义在单一空间分辨率上的树结构马尔可夫场(Tree-Structured Markov Random Field,TS-MRF)模型能够表达图像的分层结构信息,但难以描述图像的非平稳性,针对该问题,提出小波域的TS-MRF图像建模方法-WTS-MRF模型,按照图像分类层次树的结构形式,该模型将一系列的MRF嵌套定义在多分辨率的小波域中:每一个树节点对应于定义在不同分辨率上的一个MRF集合,并通过条件概率的形式将相邻分辨率上的MRF间的作用关系考虑进来;同时相同分辨率的父子节点对应的MRF通过区域约束嵌套定义.基于WTS-MRF模型,给出了一个监督图像分割的递归算法,通过给定的分类层次树表示先验信息,并通过训练数据给出叶子节点在各分辨率上的统计参数,它在尺度内和尺度间两个层次上进行递归:首先,在最低分辨率上执行尺度内递归,即采用ICM算法从树的根节点到叶子节点依次对MRF进行递归估计;然后执行尺度间递归,即在相邻的更高分辨率尺度上,通过直接投影的方式依次获取每一MRF的初始估计,并采用ICM算法递归优化;最后,原始分辨率的MRF估计完成,获取最终分割结果.两组实验从视觉效果和定量指标(整体分类正确率和Kappa系数)两个方面验证了算法的有效性.