基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了得到结构更加紧凑、泛化性能更强的自组织模糊神经网络,提出了基于粒子滤波(particle filter,PF)的自组织模糊神经网络训练算法.其能够对模糊规则进行自动生成和增删.文中给出了模糊规则生成准则,应用误差率下降方法作为模糊规则增删策略,删除作用不大的规则.建立了以隶属函数宽度参数为状态,以理想输出为量测的动力学模型,利用PF对参数进行了学习.最后,对两个实例进行了仿真,从仿真结果可以看出,与D-FNN、SOFNN、EKF-SOFNN等算法相比,其在结构紧凑性以及泛化性能上都得到了提高,从而证明了PF-SOFNN的有效性.
推荐文章
基于EKF的模糊神经网络快速自组织学习算法
模糊神经网络
扩展卡尔曼滤波
自组织学习
基于SVD_TLS及EKF算法的动态自组织模糊神经网络
奇异值分解_总体最小二乘法(SVD_TLS)
扩展卡尔曼滤波(EKF)
Machey-Glass时间序列预测
SCARA机器人自组织模糊聚类神经网络控制器
自组织模糊控制
聚类分析
模糊系统
神经网络
基于粗糙集和自组织神经网络的聚类方法
自组织神经网络
粗糙集
聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子滤波的自组织模糊神经网络算法研究
来源期刊 仪器仪表学报 学科 工学
关键词 粒子滤波 自组织模糊神经网络 误差率下降 模糊规则 隶属函数
年,卷(期) 2011,(3) 所属期刊栏目 学术论文
研究方向 页码范围 634-639
页数 分类号 TN391.41
字数 2825字 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (30)
共引文献  (53)
参考文献  (11)
节点文献
引证文献  (18)
同被引文献  (62)
二级引证文献  (55)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(4)
  • 参考文献(1)
  • 二级参考文献(3)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(6)
  • 参考文献(1)
  • 二级参考文献(5)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(4)
  • 参考文献(4)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(3)
  • 引证文献(2)
  • 二级引证文献(1)
2013(2)
  • 引证文献(1)
  • 二级引证文献(1)
2014(8)
  • 引证文献(6)
  • 二级引证文献(2)
2015(13)
  • 引证文献(1)
  • 二级引证文献(12)
2016(10)
  • 引证文献(0)
  • 二级引证文献(10)
2017(12)
  • 引证文献(4)
  • 二级引证文献(8)
2018(15)
  • 引证文献(3)
  • 二级引证文献(12)
2019(9)
  • 引证文献(1)
  • 二级引证文献(8)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
粒子滤波
自组织模糊神经网络
误差率下降
模糊规则
隶属函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
仪器仪表学报
月刊
0254-3087
11-2179/TH
大16开
北京市东城区北河沿大街79号
2-369
1980
chi
出版文献量(篇)
12507
总下载数(次)
27
总被引数(次)
146776
论文1v1指导