基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
局部线性判别嵌入(locally linear discriminant embedding,LLDE)将局部线性嵌入(locally linear embedding,LLE)和最大间隔(maximum margin criterion,MMC)进行融合,有效地提高了LLE算法的识别力。但其保留的是数据的全局判别信息,且依赖数据的分布。针对LLDE的不足,本研究将LLE和加权非参数最大间隔(weighted non-parametric maximum margin criterion,WNMMC)进行融合,提出了一种新的有监督的降维方法——非参数判别性局部线性嵌入(nonparametric locally linear discriminant embedding,NLLDE)。NLLDE保留了数据更为有效的局部判别信息,因此更具判别力。NLLDE采用了非参数数据表示,使得模型及求解不依赖于数据的分布,克服了LLDE针对高斯分布数据有效的局限,其应用范围更为广泛。Yale和PIE人脸数据库上的实验结果证实了NLLDE的高效性。
推荐文章
局部线性嵌入算法中参数的选取
线性嵌入
最佳参数值
降维
重构误差
小世界邻域优化的局部线性嵌入算法
局部线性嵌入
降维
小世界邻域
基于邻域参数动态变化的局部线性嵌入人脸识别
人脸识别
流形学习
局部线性嵌入
最小生成树
单链聚类
支持向量机
基于局部线性嵌入算法的化工过程故障检测
局部线性嵌入算法
支持向量数据描述
故障检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于非参数判别性分析的局部线性嵌入算法研究
来源期刊 山东大学学报:工学版 学科 工学
关键词 降维 子空间学习 人脸识别 线性嵌入
年,卷(期) 2011,(4) 所属期刊栏目
研究方向 页码范围 1-6
页数 分类号 TP301
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王熙照 河北大学数学与计算机学院 88 1286 18.0 32.0
2 花强 河北大学数学与计算机学院 4 6 2.0 2.0
3 白丽杰 河北大学数学与计算机学院 1 3 1.0 1.0
4 刘玉超 河北大学数学与计算机学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (17)
参考文献  (9)
节点文献
引证文献  (3)
同被引文献  (7)
二级引证文献  (2)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(4)
  • 参考文献(2)
  • 二级参考文献(2)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(3)
  • 参考文献(2)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(2)
  • 引证文献(2)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(0)
  • 二级引证文献(1)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
降维
子空间学习
人脸识别
线性嵌入
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山东大学学报(工学版)
双月刊
1672-3961
37-1391/T
大16开
济南市经十路17923号
24-221
1956
chi
出版文献量(篇)
3095
总下载数(次)
14
总被引数(次)
24236
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导