基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
选择性集成通过选择部分基分类器参与集成,从而提高集成分类器的泛化能力,降低预测开销.但已有的选择性集成算法普遍耗时较长,将数据挖掘的技术应用于选择性集成,提出一种基于FP-Tree(frequent pattern tree)的快速选择性集成算法:CPM-EP(coverage based pattern mining for ensemble pruning).该算法将基分类器对校验样本集的分类结果组织成一个事务数据库,从而使选择性集成问题可转化为对事务数据集的处理问题.针对所有可能的集成分类器大小,CPM-EP算法首先得到一个精简的事务数据库,并创建一棵FP-Tree树保存其内容;然后,基于该FP-Tree获得相应大小的集成分类器.在获得的所有集成分类器中,对校验样本集预测精度最高的集成分类器即为算法的输出.实验结果表明,CPM-EP算法以很低的计算开销获得优越的泛化能力,其分类器选择时间约为GASEN的1/19以及Forward-Selection的1/8,其泛化能力显著优于参与比较的其他方法,而且产生的集成分类器具有较少的基分类器.
推荐文章
基于FP-tree的最大频繁项集挖掘新算法
关联规则
最大频繁项集
频繁模式树
频繁项集
逆向索引FP-tree挖掘频繁项集
数据挖掘
FP-tree
扩展频繁项集
逆向
基于FP-tree和约束概念格的关联规则挖掘算法及应用研究
规则挖掘
频繁模式树
约束概念格
材料腐蚀
广义邻域粗集下的集成特征选择及其选择性集成算法
集成特征选择
广义邻域粗集
马氏距离分布熵
选择性集成
模拟电路故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于FP-Tree的快速选择性集成算法
来源期刊 软件学报 学科 工学
关键词 集成学习 选择性集成 频繁模式树 Bagging 误差反向传播神经网络
年,卷(期) 2011,(4) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 709-721
页数 分类号 TP181
字数 8558字 语种 中文
DOI 10.3724/SP.J.1001.2011.03752
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 徐明 国防科学技术大学计算机学院 46 573 14.0 22.0
2 蒋艳凰 国防科学技术大学计算机学院 11 146 6.0 11.0
3 赵强利 国防科学技术大学计算机学院 2 38 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (7)
共引文献  (11)
参考文献  (8)
节点文献
引证文献  (16)
同被引文献  (22)
二级引证文献  (46)
1960(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(2)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(2)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(2)
  • 引证文献(2)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(4)
  • 引证文献(2)
  • 二级引证文献(2)
2015(4)
  • 引证文献(2)
  • 二级引证文献(2)
2016(6)
  • 引证文献(4)
  • 二级引证文献(2)
2017(10)
  • 引证文献(0)
  • 二级引证文献(10)
2018(15)
  • 引证文献(1)
  • 二级引证文献(14)
2019(13)
  • 引证文献(3)
  • 二级引证文献(10)
2020(6)
  • 引证文献(0)
  • 二级引证文献(6)
研究主题发展历程
节点文献
集成学习
选择性集成
频繁模式树
Bagging
误差反向传播神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件学报
月刊
1000-9825
11-2560/TP
16开
北京8718信箱
82-367
1990
chi
出版文献量(篇)
5820
总下载数(次)
36
总被引数(次)
226394
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导