基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
个性化推荐系统能产生针对性的、个性化的信息来满足不同用户需求,但也很容易受到用户描述文件注入恶意攻击,影响正常的推荐结果.针对该问题,分析和研究了描述文件的形式化模型、描述文件的属性及分类方法,应用粗糙集理论,设计了数据预处理离散化、决策表约简和个性化推荐处理相应算法,提出了一种用户描述文件分类学习和攻击检测的方法;为降低攻击对推荐结果的影响,完善了推荐系统的安全,设计出一种动态交互的个性化推荐模型框架.实例证明,用户描述文件的属性分类及检测方法是有效的,准确率高,能够有效地改善个性化推荐系统模型的安全.
推荐文章
基于模糊描述逻辑的个性化推荐系统建模
个性化推荐
模糊描述逻辑
用户兴趣
基于大数据的Web个性化推荐系统设计
大数据
Hadoop
Web个性化推荐
系统设计
Sqoop
H-ICRS算法
大数据个性化推荐分析
大数据
个性化推荐
兴趣爱好
推荐算法
协同过滤
混合推荐
基于约束满足的个性化西服定制推荐系统
个性化定制
西服定制
需求获取
推荐系统
约束满足问题
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 个性化推荐系统描述文件攻击检测方法
来源期刊 电子科技大学学报 学科 工学
关键词 分类 描述文件 检测 推荐系统 粗糙集理论
年,卷(期) 2011,(2) 所属期刊栏目 计算机工程与应用
研究方向 页码范围 250-254
页数 分类号 TP393.08
字数 5370字 语种 中文
DOI 10.3969/j.issn.1001-0548.2011.02.019
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张靖 攀枝花学院网络中心 39 255 7.0 15.0
2 邱云 中国科学院成都计算机应用研究所 2 15 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (7)
参考文献  (2)
节点文献
引证文献  (5)
同被引文献  (11)
二级引证文献  (28)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(3)
  • 引证文献(1)
  • 二级引证文献(2)
2016(6)
  • 引证文献(0)
  • 二级引证文献(6)
2017(5)
  • 引证文献(0)
  • 二级引证文献(5)
2018(10)
  • 引证文献(2)
  • 二级引证文献(8)
2019(6)
  • 引证文献(0)
  • 二级引证文献(6)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
分类
描述文件
检测
推荐系统
粗糙集理论
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子科技大学学报
双月刊
1001-0548
51-1207/T
大16开
成都市成华区建设北路二段四号
62-34
1959
chi
出版文献量(篇)
4185
总下载数(次)
13
总被引数(次)
36111
论文1v1指导