基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
将小波分解应用于害虫发生程度非平稳时间序列的分析和预测.通过小波分解,将非平稳时间序列分离为多个平稳分量,然后采用自回归滑动平均方法对各平稳分量分别进行分析和建模,最后将所有分量的模型进行组合,从而可以得到原非平稳时间序列的预测模型.在实例分析中,利用1959年至2004年烟台市一代玉米螟发生程度数据序列建立了预测模型,利用2005年至2009年的数据对模型进行了检验.检验结果表明:5年预测准确率达到了80%,预测效果令人满意.
推荐文章
基于小波分解的网络流量时间序列建模与预测
网络流量
小波分解
时间序列
预测
基于小波分解与重构的混沌时间序列预测
小波分解与重构
混沌时间序列
预测
基于小波分析与支持向量机的时间序列预测
小波分析
多尺度分解
去噪
支持向量机
时间序列预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波分解的害虫发生非平稳时间序列分析和预测
来源期刊 南京农业大学学报 学科 农学
关键词 小波分解 多分辨率分析 非平稳时间序列 玉米螟 预测
年,卷(期) 2011,(3) 所属期刊栏目
研究方向 页码范围 61-66
页数 分类号 S431.9
字数 4820字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 翟保平 南京农业大学昆虫学系 88 2224 28.0 44.0
2 朱军生 南京农业大学昆虫学系 2 12 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (25)
参考文献  (10)
节点文献
引证文献  (8)
同被引文献  (50)
二级引证文献  (8)
1988(2)
  • 参考文献(1)
  • 二级参考文献(1)
1989(2)
  • 参考文献(1)
  • 二级参考文献(1)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(1)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(2)
  • 二级参考文献(1)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(5)
  • 引证文献(2)
  • 二级引证文献(3)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
小波分解
多分辨率分析
非平稳时间序列
玉米螟
预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京农业大学学报
双月刊
1000-2030
32-1148/S
大16开
南京市卫岗1号
28-53
1956
chi
出版文献量(篇)
2940
总下载数(次)
5
总被引数(次)
46407
论文1v1指导