基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了针对数据水平分布的分布式数据集下的全局最大频繁项集更新挖掘算法(UDMFI),用于解决当最小支持度阈值发生变化时全局最大频繁项集的更新挖掘问题.通过提出的带项目头表的频繁模式树(HFP-Tree)来存储数据,然后根据最小支持度阈值变小时,原最大频繁项集的集合中的元素一定是新最大频繁项集的集合中某些元素的子集的特性,以及最小支持度阈值变大时,原最大频繁项集中的一些最大频繁项集将可能不再是新最大频繁项集的集合中的最大频繁项集的特性,充分利用已挖掘的结果,从而减少挖掘过程中的费用.实验结果表明该算法具有较好的效率.
推荐文章
基于项编码的分布式频繁项集挖掘算法
频繁项集挖掘
Apriori算法
大数据
分布式计算
分布式全局频繁项目集的快速挖掘方法
数据挖掘
分布式数据库
全局频繁项目集
被约束子树
分布式全局最大频繁项集挖掘算法
数据挖掘
关联规则
分布式挖掘
最大频繁项集
一种最大频繁项集快速更新算法
最大频繁项集
数据挖掘
增量式更新
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 分布式全局最大频繁项集更新挖掘算法
来源期刊 华中科技大学学报:自然科学版 学科 工学
关键词 数据挖掘 分布式数据集 数据存储 最大频繁项集 更新挖掘
年,卷(期) 2011,(12) 所属期刊栏目 信息技术
研究方向 页码范围 85-88,106
页数 分类号 TP311.13
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨君锐 西安科技大学计算机科学与技术学院 24 111 7.0 9.0
2 杨莉 西安科技大学计算机科学与技术学院 2 10 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (32)
共引文献  (144)
参考文献  (10)
节点文献
引证文献  (4)
同被引文献  (6)
二级引证文献  (9)
1996(5)
  • 参考文献(1)
  • 二级参考文献(4)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(9)
  • 参考文献(1)
  • 二级参考文献(8)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(6)
  • 参考文献(2)
  • 二级参考文献(4)
2006(7)
  • 参考文献(2)
  • 二级参考文献(5)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(0)
  • 二级引证文献(1)
2015(2)
  • 引证文献(0)
  • 二级引证文献(2)
2016(3)
  • 引证文献(2)
  • 二级引证文献(1)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
数据挖掘
分布式数据集
数据存储
最大频繁项集
更新挖掘
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华中科技大学学报(自然科学版)
月刊
1671-4512
42-1658/N
大16开
武汉市珞喻路1037号
38-9
1973
chi
出版文献量(篇)
9146
总下载数(次)
26
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导