原文服务方: 计算机应用研究       
摘要:
Apriori算法是解决频繁项集挖掘最常用的算法之一,但多轮迭代扫描完整数据集的计算方式,严重影响算法效率且难以并行化处理.随着数据规模的持续增大,这一问题日益严重.针对这一问题,提出了一种基于项编码和Spark计算框架的Apriori并行化处理方法——IEBDA算法,利用项编码完整保存项集信息,在不重复扫描完整数据集的情况下完成频繁项集挖掘,同时利用Spark的广播变量实现并行化处理.与其他分布式Apriori算法在不同规模的数据集上进行性能比较,发现IEBDA算法从第一轮迭代后加速效果明显.结果 表明,该算法可以提高大数据环境下多轮迭代的频繁项集挖掘效率.
推荐文章
分布式数据流中挖掘频繁项算法的研究
分布式数据流
频繁项
多线程并发技术
基于索引数组的频繁项集挖掘算法
数据挖掘
关联规则
频繁项集
索引数组
基于WNegNodeset结构的加权频繁项集挖掘算法
加权频繁项集
加权支持度
位图加权树
按位运算符
差集策略
基于格的快速频繁项集挖掘算法
数据挖掘
FP-树
频繁项集
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于项编码的分布式频繁项集挖掘算法
来源期刊 计算机应用研究 学科
关键词 频繁项集挖掘 Apriori算法 大数据 分布式计算
年,卷(期) 2019,(4) 所属期刊栏目 算法研究探讨
研究方向 页码范围 1059-1063,1067
页数 6页 分类号 TP391|TP301.6
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2017.11.0791
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 邓晓衡 中南大学软件学院 92 703 13.0 21.0
2 郑静益 中南大学软件学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (27)
共引文献  (23)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(7)
  • 参考文献(1)
  • 二级参考文献(6)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
频繁项集挖掘
Apriori算法
大数据
分布式计算
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导