基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
预测蛋白质二级结构,是当今生物信息学中一个难以解决的问题.由于预测蛋白质二级结构的精度在蛋白质结构研究中起到非常重要的作用,因此在基于KDTICM理论基础上,提出一种基于混合SVM方法的蛋白质二级结构预测算法.该算法有效地利用蛋白质的物化属性和PSI-SEARCH生成的位置特异性打分矩阵作为双层SVM的输入,从而大大地提高了蛋白质二级结构预测的精度.实验比较分析表明,新算法的预测精度和普适性明显优于目前其他典型的预测方法.
推荐文章
基于改进牛顿算法的蛋白质二级结构预测
改进牛顿算法
蛋白质二级结构预测
Profile编码
神经网络
优化多核SVM的蛋白质二级结构预测
蛋白质
二级结构预测
多核支持向量机
特征提取
特征融合
线性加权
蛋白质二级结构的协同训练预测方法
协同训练
蛋白质
二级结构预测
支持向量机
神经网络
应用ANN/HMM混合模型预测蛋白质二级结构
蛋白质二级结构预测
隐马尔可夫模型
人工神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于混合SVM方法的蛋白质二级结构预测算法
来源期刊 计算机科学与探索 学科 工学
关键词 蛋白质二级结构预测 混合SVM方法 复合金字塔模型
年,卷(期) 2011,(10) 所属期刊栏目 数据库与数据挖掘
研究方向 页码范围 169-173,188
页数 分类号 TP391
字数 5549字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨炳儒 北京科技大学信息工程学院 319 4361 32.0 49.0
2 隋海峰 北京科技大学信息工程学院 7 52 4.0 7.0
3 曲武 北京科技大学信息工程学院 6 102 4.0 6.0
4 钱文彬 北京科技大学信息工程学院 12 88 5.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (27)
共引文献  (9)
参考文献  (22)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(1)
  • 二级参考文献(0)
1983(2)
  • 参考文献(1)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(2)
  • 参考文献(1)
  • 二级参考文献(1)
1992(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(5)
  • 参考文献(1)
  • 二级参考文献(4)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(7)
  • 参考文献(3)
  • 二级参考文献(4)
2001(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(3)
  • 参考文献(3)
  • 二级参考文献(0)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(3)
  • 参考文献(2)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(2)
  • 二级参考文献(1)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
蛋白质二级结构预测
混合SVM方法
复合金字塔模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学与探索
月刊
1673-9418
11-5602/TP
大16开
北京市海淀区北四环中路211号北京619信箱26分箱
82-560
2007
chi
出版文献量(篇)
2215
总下载数(次)
4
总被引数(次)
10748
论文1v1指导